

INFORME FINAL

Proyecto FIP N° 2004-16

Monitoreo de la pesquería artesanal de jaibas en la X y XI Regiones

AGOSTO 2006

INFORME FINAL

FIP N° 2004-16

Monitoreo de la pesquería artesanal de jaibas en la X y XI Regiones

REQUIRENTE

FONDO DE INVESTIGACIÓN PESQUERA, FIP Presidente del Consejo: Carlos Hernández Salas

EJECUTOR

INSTITUTO DE FOMENTO PESQUERO, IFOP

Jefe División Investigación Pesquera: Mauricio Braun Alegría

Directora Ejecutiva: Vivian Montecino Banderet

JEFE DE PROYECTO

ROBERTO BAHAMONDE

AUTORES

ANDRÉS OLGUÍN
NANCY BARAHONA
CLAUDIO BERNAL
ZAIDA YOUNG
JOSE ORENZANZ
CARLOS MONTENEGRO
JUAN CARLOS QUIROZ
CRISTIAN TOLEDO
PEDRO BAEZ
ROBERTO BAHAMONDE

COLABORADORES

DAGOBERTO SUBIABRE
CLAUDIO VICENCIO
MAURICIO SAEZ
PATRICIO GALVEZ
VICTOR CATASTI
ESTEBAN MOLINA
GEORGIUS KALERGIS
CLAUDIO DIAZ
VIVIAN PEZO
RAUL VERA
ELVIA MANCILLA
DENIS ALVARADO
EDITA ORTIZ

RESUMEN EJECUTIVO

Este documento corresponde al Informe final del proyecto "Monitoreo de la pesquería artesanal de jaibas en la X y XI Regiones", FIP N° 2004 - 16, estudio que se inició en noviembre de 2004 y finalizó en enero de 2006. El objetivo general fue diagnosticar la situación actual de la pesquería y evaluar el perfeccionamiento de las normas de administración existentes a la fecha. Se ejecutó un monitoreo permanente durante 12 meses en 5 centros de desembarque ubicados en ambas regiones en estudio, lo que permitió recabar antecedentes para alcanzar los objetivos propuestos. En forma paralela se realizó una revisión bibliográfica de los antecedentes disponibles sobre los recursos objetivos, se efectuaron entrevistas y encuestas a los agentes que actúan sobre la pesquería.

El universo de pescadores estimado fue de 835 personas, 573 en la X Región y 262 en la XI Región. Estas cifras representan el 9% y 14,4% del total de pescadores inscritos en las respectivas regiones para explotar jaibas (6.279 en la X Región y 1.818 en la XI Región).

Se estimó que la flota extractora de jaibas está compuesta por 266 embarcaciones, 198 en la X Región y 68 en la XI Región, cifras que representan el 9,1% y 8,6%, respectivamente, de la flota inscrita para explotar los recursos objetivo (2.155 en la X Región y 787 en la XI Región). La flota es mayoritariamente de madera, propulsada por motores internos o fuera de borda, con casilla ubicada en proa y en algunos casos con la bodega cubierta y con estructura a popa sobre ella, a diferencia de la observada en la XI que no posee estructura sobre la cubierta.

La actividad extractiva sobre jaibas se realizó mediante dos sistemas de pesca: buceo y trampa, observándose el empleo de ambos en la X Región, mientras que en la XI Región sólo se observó el empleo de trampas.

El régimen de operación de buceo es diurno y normalmente corresponde a una jornada de pesca diaria, mientras que el de trampas utiliza distintas modalidades, diario y diurno o mayor a un día, utilizando el día para las operaciones de calado y virado mientras que

la noche para el reposo. La flota de la X Región, desembarcó su captura en los puertos bases, indistintamente del método de pesca utilizado, mientras que en la XI Región se operó mediante faenas, las cuales difieren de las utilizadas para la pesca de erizo en el sentido que no existen puertos de faena y los pescadores viven en tierra en "casas" habilitadas en las temporadas de pesca.

La flota explotó 104 procedencias, 53 ubicadas en la X Región y 51 en la XI Región. Se observó un área de operación de la flota asociada a cada puerto. De los puertos monitoreados en la X Región, la flota de Ancud explotó el mayor número de áreas (22). El área cubierta por la flota de este puerto abarca desde los 41°34'48"LS a los 41°52'00"LS. No se observó que la flota se desplazara a operar en el sector de mar interior. En Quellón, la flota operó sobre 19 procedencias ubicadas desde los 42°37'36"LS a los 45°47'00"LS. La flota operó en el sector de mar interior de la Isla de Chiloé por el norte y en tres áreas ubicadas en la XI Región, por el sur.

En Dalcahue, la flota operó sólo con trampas en 14 procedencias, ubicadas entre los 42°27′22″LS y los 42°50′00″LS en el sector de mar interior de Chiloé. La flota de Carelmapu explotó el menor número de áreas (3) siendo una de ellas común a los dos artes de pesca. Finalmente en Puerto Chacabuco, en la XI Región las faenas de pesca se desarrollaron en 48 procedencias, ubicadas entre los 43°21′00″ LS y los 46°10′00″ LS.

Durante el periodo de estudio, producto de la actividad de buceo se desembarcaron en la X Región 110,8 t de jaibas (170.086 individuos) y 1.108 t (4,2 millones de individuos) extraídas con trampas. En ambos casos las capturas estuvieron conformadas por las especies: jaiba marmola, jaiba peluda, jaiba reina y jaiba mora. Puerto Chacabuco fue el único puerto donde sólo se desembarcó jaiba marmola.

El esfuerzo alcanzó las 3073,4 horas de buceo, concentrándose la mayor parte en Ancud (2.897,1 horas), seguido de Quellón (93,5 hrs.) y Carelmapu (82,8 hrs.). El esfuerzo empleado por las trampas correspondió 2.103.903 horas de reposo. En Puerto Chacabuco, por la particularidad del régimen de pesca (mediante faenas), no se logró estimar el esfuerzo aplicado en la captura.

Se estimaron los rendimientos por procedencia, registrando las principales procedencias: Mutrico, Isla Cochino y Bahía Ancud entre 17 y 48 kg/h-buceo. Los rendimientos de la flota trampera fluctuaron entre 0,03 y 1,483 (kg/h-reposo), Los mayores rendimientos los registró Amortajado y los más bajos Isla Cochinos.

Se realizó para jaiba marmola y secundariamente para jaiba peluda, un análisis de las tallas medias y %BTML. El análisis se basó en muestras provenientes de las procedencias asociadas a cada puerto. Para un segundo análisis se agruparon los datos por zonas. Se establecieron 7 zonas geográficas en base a criterios de ubicación geográficas de las procedencias.

Los rangos de talla de jaiba marmola, monitoreados en puertos de la X Región variaron entre 43 y 237 mm, mientras que los de Puerto Chacabuco variaron entre 84 y 189 mm. Los %BTML para machos se registraron entre 19,9% en Quellón y 71% en Ancud, mientras que en hembras variaron entre 78,6% en Quellón y 93% en Ancud. En términos latitudinales se observó una disminución de los %BTML, registrándose en Puerto Chacabuco los valores más bajos, 11,5% y 9,5% para machos y hembras, respectivamente.

El rango de tallas de jaiba reina, peluda y mora extraídas en el Golfo de Ancud fluctuaron entre 70 mm y 199 mm, con tallas medias en los 107 mm, 122 mm y 108 mm respectivamente, con porcentajes BTML entre 45,5% y 91,4.

La presencia de hembras ovíferas en los desembarques extraídas mediante ambos sistemas de pesca fue baja. Los monitoreos realizados a bordo de flota trampera en ambas regiones, mostraron que ingresan principalmente jaibas, registrándose escasa fauna acompañante, compuesta de crustáceos, moluscos, equinodermos y peces. Los mayores porcentajes de descarte obedecen a las especies objetivos, las cuales se descartan usando criterios de tamaño, especies y estado de las hembras.

Dentro del canal de distribución se identificaron tres niveles de mercado. Ellos son: mercado de playa, mayorista y minorista. En el primero interactúan los pescadores como oferentes y los compradores como demandantes. El segundo corresponde a ferias,

cadenas de supermercados, restoranes, entre los más importantes, donde los productos son vendidos tanto elaborados como en fresco. Mientras que en el mercado mayorista participan las empresas procesadoras/exportadoras vinculadas a la exportación de productos elaborados a partir de jaibas.

Los precios playa a los que se transan las jaibas, fluctuaron entre \$140 y \$250 el kg, valores similares a los que se paga por el kilogramo de erizo, pepino de mar, caracoles, algas, picorocos, almeja, cholga y tumbao, e inferiores hasta en tres veces a lo que se transa un kg de navajuela, choro zapato, huepo u ostra. En tanto, los precios de exportación de jaibas elaboradas, fluctuaron entre 5 US\$/kilo (carne) y 11,7 US\$/kilo (pinzas).

El análisis de la información histórica (1998-2005), ratifica la importancia de la extracción de jaibas mediante trampas, que llega a superar hasta 10 veces los obtenidos por buceo. El análisis en base a desembarques, esfuerzo y rendimientos indica que las principales zonas de pesca históricas se ubican preferentemente frente a Ancud y secundariamente en Quellón. A partir del 2002 se registra un aumento en las capturas provenientes de procedencias ubicadas frente a Dalcahue. Durante el año 2005, se observa mayor actividad de pesca en las zonas asociadas a los puertos de Ancud y Dalcahue. En la XI Región, las principales zonas de pesca se ubican entre los 45°S y 46°S. Sin embargo, durante los años 2002 y 2003 se registró operación al norte de la latitud 45°S, la cual no persistió en los años siguientes.

Las tallas medias han disminuido anualmente, en la X Región, en machos fluctuaron entre 150 mm en 1998 a 112 mm en 2005 y en hembras desde 130 mm en 2001 a 102 mm en 2005. En contraposición los %BTML han aumentado, desde un 20% en 1998 hasta un 91% el 2005. En la XI Región el rango de las tallas medias en machos se ubicó en 145 mm en 1998 y 132 mm en el 2005 y en hembras en 130 mm en 1998 a 110 mm en el 2005, en tanto, los %BTML han fluctuado entre el 2% y 23%.

La tasa de mortalidad por pesca indica que las hembras en la X Región se encuentran actualmente bajo mayores niveles de explotación que la población de machos. En el caso de la población de machos, los PBR y Fact indican que el nivel de mortalidad por

pesca se encuentra en el límite de la situación de sobrepesca. En la XI Región este nivel indica que la población de machos probablemente se encuentra sobreexplotada, y cualquier incremento en la mortalidad por pesca generaría importantes incrementos en Y/R, en tanto, la población de hembras, aun no ha alcanzado la condición de sobrepesca. Situación, en esta región, que se explica por la clara intencionalidad de explotación hacia los ejemplares machos, superando un 72% la explotación de ejemplares hembras.

Los usuarios de la pesquería de ambas regiones en estudio, identificaron 16 temas, como los principales a abordar para mantener el recurso en el tiempo y mejorar su actividad productiva, los cuales difieren en algunos aspectos, dada la situación actual de la pesquería de una región con respecto a la otra. Destacan: identificar el esfuerzo efectivo que opera sobre el recurso, cierre de áreas de pesca por períodos (rotación de áreas), reducir la talla mínima de extracción a 100 mm, mayor fiscalización por parte de las autoridades, adquirir mayores conocimientos sobre las especies que pescan, y mejorar las condiciones de venta de su producto.

Finalmente todos los antecedentes recopilados, indican que la jaiba de la X Región se encuentra en una situación más vulnerable que aquellas presentes en la XI Región. Los indicadores de: i) tallas medias por sexo; ii) hembras ovíferas en los desembarques; iii) porcentajes BTML por sexo; iv) rendimientos por áreas de pesca; y v) el alto número de pescadores autorizados para extraer estos recursos; se deben analizar con precaución ya que estos indicadores pueden indicar la existencia de problemas que afecten los stock disponibles o la mantención de ellos en el tiempo.

No se considera apropiado proponer nuevas medidas de regulación. Se propone efectuar ajustes que permitan el ordenamiento del esfuerzo efectivo y un trabajo que permita aumentar el conocimiento sobre la biología del recurso a nivel de los distintos agentes. Estas pesquerías llamadas SSS (sex, size, season) se sustentan en que los machos son poliginicos y las hembras almacenan espermas en sus espermatecas, lo que permite sustentarlas sin requerimientos de stock assessment, cuotas u otra medida.

ÍNDICE GENERAL

			Página
RE:	SUME	N EJECUTIVO	i
ÍND	NDICE GENERAL		
ĺМГ	ICF D	DE FIGURAS	vi viii
		DE FOTOGRAFÍAS	
			xii
IND	ICE D	DE TABLAS	xiii
1.	AN	TECEDENTES	1
2.	ОВ	JETIVOS DEL PROYECTO	5
	2.1	Objetivo General	5
	2.2	Objetivos específicos	5
3.	ME	TODOLOGÍA	6
	3.1	Objetivo Específico 2.2.1	7
	3.2	Objetivo específico 2.2.2	8
	3.3	Objetivo Específico 2.2.3	12
	3.4	Objetivo Específico 2.2.4	
	3.5	Objetivo específico 2.2.5	
	3.6	Objetivo Específico 2.2.6	31
4.	RES	SULTADOS	39
	4.1	Resultados asociados al Objetivo Específico 2.2.1	39
	4.2	Resultados asociados al Objetivo Específico 2.2.2	
	4.3	Resultados asociados al Objetivo Específico 2.2.3	
	4.4	Resultados asociados al Objetivo Específico 2.2.4	66
	4.5	Resultados asociados al Objetivo Específico 2.2.5	68
	4.6	Resultados asociados al Objetivo Específico 2.2.6	76
5.		CUSIÓN	92
6 .		NCLUSIONES	104
7.	RIR	LIOGRAFÍA CONSULTADA	107

FIGURAS

FOTOGRAFIAS

TABLAS

ANEXOS

ANEXO 1	FORMULARIO REGISTRO DIARIO DE CAPTURA.
ANEXO 2	DETERMINACIÓN DE TAMAÑOS DE MUESTRA.
ANEXO 3	ENCUESTA APLICADA A USUARIOS DE LA PESQUERÍA DE JAIBAS
ANEXO 4	DVD "ACTIVIDAD EXTRACTIVA, DESEMBARQUES Y MUESTREOS DE LA PESQUERÍA DE JAIBAS".
ANEXO 5	CD CON BASE DE DATOS DEL PROYECTO.
ANEXO 6	RELACIONES TALLAS-PESO POR PROCEDENCIA Y RESULTADOS DE LOS ANALISIS DE LAS COVARIANZAS.
ANEXO 7	DESCRIPCIÓN TAXONÓMICA DEL MATERIAL COLECTADO
ANEXO 8	DISTRIBUCION BATIMETRICA DE LOS DESEMBARQUES.
ANEXO 9	PERSONAL PARTICIPANTE DEL PROYECTO.
ANEXO 10	CD CON INFORME FINAL EN FORMATO PDF.

ÍNDICE DE FIGURAS

- **Figura 1.** Desembarque (t) en Chile de las especies que componen el recurso jaiba, 2004 (Elaborado a partir de información de Serna<u>pesca</u>).
- **Figura 2a.** Ancud. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante buceo.
- **Figura 2b.** Ancud. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.
- **Figura 2c.** Dalcahue. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.
- **Figura 2d.** Carelmapu. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante buceo.
- **Figura 2e.** Carelmapu. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.
- **Figura 2f.** Quellón. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante buceo.
- **Figura 2g.** Quellón. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.
- **Figura 2h.** XI Región. Distribución espacial de la ubicación de las faenas de pesca para la extracción de jaibas mediante trampas.
- **Figura 2i.** XI Región. Distribución espacial de la ubicación de las faenas de pesca para la extracción de jaibas mediante trampas.
- **Figura 3.** Regiones X y XI. Estructuras de tallas de C. edwardsii, desembarcadas por puerto según arte de pesca. Noviembre 2004 Octubre 2005 (EBTML: Ejemplares bajo la talla mínima legal).
- **Figura 4a.** Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba marmola, por sexo, zona (1 a 4) y periodo. Nov-dic 2004 y ene-oct 2005.
- **Figura 4b.** Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba marmola, por sexo, zona (5 a 7) y periodo. Nov-dic 2004 y ene-oct 2005.
- **Figura 5.** Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba marmola, por zona para el total y por sexo. Nov-dic 2004 y ene-oct 2005.

- **Figura 6.** Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba reina, peluda y mora en la Zona de Ancud Nov-dic 2004 y ene-oct 2005.
- **Figura 7.** Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba reina por Zona. Nov-dic 2004 y ene-oct 2005.
- Figura 8. Canal de distribución de jaiba extraída en la X y XI Regiones.
- **Figura 9.** Comparación de los precios playa de jaibas versus otros grupos de recursos.
- **Figura 10.** Valor de exportación chilena de jaibas. 1996-2004.
- Figura 11. Cantidad y precio (FOB) de exportación chilena de jaiba
- **Figura 12.** Precios FOB de jaiba en el formato carne y pinzas en el mercado de Estados Unidos.
- **Figura 13.** Desembarques anuales registrados por IFOP. a) por medio de extracción sin considerar región; b) obtenidos mediante buceo; c) obtenidos mediante trampas; d) por región sin considerar sistema de pesca.
- **Figura 14.** Distribución espacial y anual de la jaiba en la X Región. Período 1998-2001.
- **Figura 15.** Distribución espacial y anual de la jaiba en la X Región. Período 2002-2005.
- **Figura 16.** Distribución espacial y anual de la jaiba marmola en la XI Región. Período 1998-2001.
- **Figura 17.** Distribución espacial y anual de la jaiba marmola en la XI Región. Período 2002-2005.
- **Figura 18.** Distribución por zonas de pesca, agrupadas latitudinalmente. Período 2002-2005.
- **Figura 19.** Evolución del desembarque, esfuerzo y rendimiento histórico de las naves que operaron por más de 6 años, en el periodo 1998 a 2005., en la X Región. a) Desembarques en toneladas b) esfuerzo (N° trampas) y c) Rendimientos (Kg de jaibas desembarcada/trampa).
- **Figura 20.** Boxplot de los rendimientos de pesca de jaibas (Kilos/ trampa), para los registros obtenidos en el periodo 1998 –2005.

- **Figura 21.** Desembarque encuestado por mes y año, para las principales zonas de pesca y total, X Región.
- Figura 22. Tallas medias (mm) de jaiba marmola por sexo y puerto. 1998 2005. (■ machos y ▲ hembras)
- **Figura 23.** Tallas medias mensuales por sexo en los desembarques de jaibas, por especie y zona principal de pesca, periodo 1998 2005. Las líneas indican el promedio móvil (línea entera= macho; punteadas= hembras).
- **Figura 24.** Gráficos Boxplot del ancho cefalotorácico de jaiba marmola por sexo y puerto.
- **Figura 25.** Proporción mensual de sexos (gris= machos; blanco= hembras) en los desembarques de jaibas, por especie y zona principal de pesca, periodo 1998 2005.
- **Figura 26.** Porcentaje de jaiba marmola bajo talla mínima legal, observada por sexo y puerto entre los años 1998 y 2005. Machos (blanco) y hembras (gris).
- Figura 27. Estimación de la relación Z/K para jaiba marmola en la X Región
- **Figura 28.** Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola macho en la X Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).
- **Figura 29.** Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola hembras en X Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).
- **Figura 30.** Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola macho en la XI Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).
- **Figura 31.** Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola hembras en XI Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).
- **Figura 32.** Relación talla–alto de la quela observada en el puerto de Quellón (958). Jaiba marmola.

- **Figura 33.** Sumas de cuadrados medios residuales conjuntas estimadas para jaiba marmola, por puerto y total. Quellón (958), Ancud (947), Puerto Chacabuco (960) y Dalcahue (950).
- **Figura 34.** Distribución de los residuales para el total de datos de machos. Jaiba marmola.
- **Figura 35.** Distribución de los residuales para el total de datos de hembras. Jaiba marmola

ÍNDICE DE FOTOGRAFÍAS

- **Fotografía 1.** X Región. Tipo de embarcación que realiza faenas diarias en la extracción de jaibas mediante buceo. A) Ancud (de madera); B) Quellón (de madera); C) Piñihuil (de fibra de vidrio).
- **Fotografía 2.** Embarcaciones utilizadas en las "faenas" de la XI Región para la extracción de jaibas.
- **Fotografía 3.** Trampas utilizadas en la captura de jaibas. A la Izquierda se muestra la utilizada en la X Región. A la derecha la utilizada en la XI Región.
- Fotografía 4. Pluma utilizada para el virado de la trampa en la X Región.
- **Fotografía 5.** Proceso manual de virado de trampas en el sector de faenas en la XI Región.
- Fotografía 6. Ancud. Proceso de encarnadura en sistema de trampas. A) Llegada de carnada al muelle; B) Carnada utilizada (desechos de pescados); C) Recipientes donde es almacenada la carnada; D) Preparación de la carnada para ser puesta en las bolsas; E) Bolsas o "quiñes" donde se coloca la carnada; F) Revisión del lugar donde será puesta la bolsa con la carnada.
- Fotografía 7. Embarcación que realiza faenas diarias en la extracción de jaibas.
- **Fotografía 8.** Obtención de carnada en faenas de la XI Región: A) Banco de Mitílidos; B) Captura de peces mediante redes.
- Fotografía 9. "Quiñes" o bolsas donde se coloca la carnada.
- **Fotografía 10.** "Apozamiento" de las jaibas obtenidas durante el día (Izquierda), a la espera de ser retiradas por la embarcación de cabotaje (derecha).
- Fotografía 11. Sitios donde habitan los extractores de jaibas en la XI Región.
- **Fotografía 12.** Embarcación de cabotaje que se dedica al transporte del recurso jaiba desde las zonas de pesca hasta los puertos de desembarque.

ÍNDICE DE TABLAS

- **Tabla 1.** Parámetros biológicos de jaiba marmola estimados para la zona de estudio
- **Tabla 2.** Número de pescadores inscritos (Fuente: Serna<u>pesca</u>) para operar sobre la pesquería de jaibas versus Número de pescadores efectivamente extrayendo el recurso (Fuente: Presente estudio*), X Región
- **Tabla 3.** Número de pescadores que operaron sobre el recurso jaiba, encuestados en las faenas de la XI Región.
- **Tabla 4.** Número de buzos que operaron durante el periodo de estudio. X Región.
- **Tabla 5.** Número de embarcaciones inscritas (Fuente: Serna<u>pesca</u>) para operar sobre la pesquería de jaibas versus Número de embarcaciones efectivamente extrayendo el recurso (Fuente: Presente estudio*), X Región
- **Tabla 6.** Número de embarcaciones que operaron sobre los recursos jaibas y que fueron encuestadas en las faenas de la XI Región.
- **Tabla 7.** Número de embarcaciones (buceo=B; trampas=T) registrada mensualmente durante el periodo de estudio en ambas regiones.
- **Tabla 8.** Rango de eslora de las embarcaciones extractoras de jaibas en la X y XI Regiones
- **Tabla 9.** Rango de potencia de las embarcaciones extractoras de jaibas en la X y XI Regiones
- **Tabla 10.** Marcas de motores usados por las embarcaciones extractoras de jaibas en la X y XI Regiones
- **Tabla 11.** Rangos de volumen del acumulador y capacidad de los compresores.
- **Tabla 12.** Georeferenciación de las procedencias explotadas por la flota buceadora y trampera, asociada a los puertos de la X Región.
- **Tabla 13.** Georeferenciación de las procedencias explotadas por la flota trampera, asociada a los puertos de la XI Región.
- **Tabla 14.** Principales áreas de pesca de jaiba, por puerto, seleccionadas en base al criterio nivel de desembarque y N° de viajes.

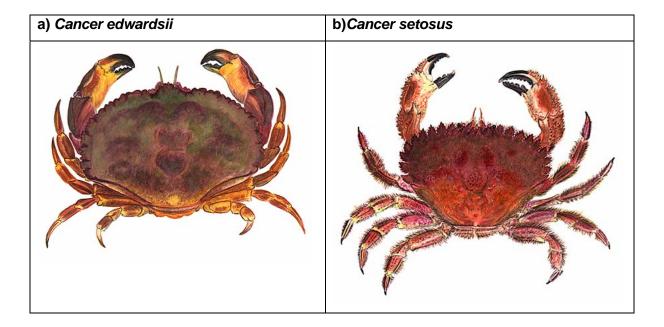
- **Tabla 15.** Principales áreas de pesca de jaiba, por puerto, seleccionadas en base al criterio Número de embarcaciones.
- **Tabla 16.** Desembarque en peso (kg) y Número de jaibas extraídas mediante buceo, distribuidos por puerto y mes.
- **Tabla 17.** Desembarque en peso (kg) de las distintas especies de jaibas extraídas mediante buceo.
- **Tabla 18.** Desembarque en peso (kg) de jaibas extraídas mediante buceo, distribuidos por puerto, procedencia, especie y mes.
- **Tabla 19.** Desembarque en peso (kg) y Número de jaibas extraídas mediante trampas, distribuidos por puerto y mes.
- **Tabla 20.** Desembarque en peso (kg) de las distintas especies de jaibas extraídas mediante trampas.
- **Tabla 21.** Desembarque en peso (kg) de jaibas extraídas mediante trampas, distribuidos por puerto, procedencia, especie y mes.
- **Tabla 22.** Esfuerzo estimado (horas de buceo) realizado por la flota que extrae jaibas mediante sistema de buceo.
- **Tabla 23.** Esfuerzo estimado (horas de reposo) realizado por la flota que extrae jaibas mediante sistema de trampas
- **Tabla 24.** Rendimiento (kg/h-buceo) realizado por la flota que extrae jaibas mediante sistema de buceo
- **Tabla 25.** Rendimiento (kg/h-reposo) realizado por la flota que extrae jaibas mediante sistema de trampas
- **Tabla 26.** Moda presente en las estructuras de talla analizadas de jaibas marmola analizadas por puerto, sexo y arte de pesca.
- **Tabla 27.** Tallas medias (ancho cefalotoráxico, mm) de jaiba marmola y coeficiente de variación, por sexo para cada una de las zonas y períodos. Nov-dic 2004 y ene-oct 2005.
- **Tabla 28.** Proporción bajo la talla mínima legal (120 mm) de jaiba marmola y coeficiente de variación, por sexo para cada una de las zonas y períodos. Nov-dic 2004 y ene-oct 2005.

- **Tabla 29.** Proporción a la talla (ancho cefalotoráxico) de jaiba marmola y coeficiente de variación, sin diferenciar por sexo. Por zona y para todo el período analizado. Nov-dic 2004 y ene-oct 2005
- **Tabla 30.** Proporción a la talla (ancho cefalotoráxico) de jaiba marmola y coeficiente de variación, machos. Por zona y para todo el período analizado. Nov-dic 2004 y ene-oct 2005
- **Tabla 31.** Proporción a la talla (ancho cefalotoráxico) de jaiba marmola y coeficiente de variación, hembras. Por zona y para todo el período analizado. Nov-dic 2004 y ene-oct 2005
- **Tabla 32.** Resultados de las pruebas estadísticas K-S, de comparaciones de distribuciones de tallas de jaiba marmola entre zonas, total y por sexo.
- **Tabla 33.** Características de las distribuciones de talla (ancho cefalotoráxico) del desembarque de jaiba reina, peluda y mora en el Golfo de Ancud. Nov-dic 2004 y ene-oct 2005
- **Tabla 34.** Características de las distribuciones de talla (ancho cefalotoráxico) de jaiba reina por zona Nov-dic 2004 y ene-oct 2005
- **Tabla 35A.** Proporción sexual (%) del desembarque por puerto, recurso y mes, registrada para jaibas extraídas mediante buceo.
- **Tabla 35B.** Proporción sexual (%) del desembarque por puerto, recurso y mes registrada para jaibas extraídas mediante trampas.
- **Tabla 36.** Proporción de machos en la captura de jaiba marmola y coeficiente de variación (%), por zona y período. Nov-dic 2004 y ene-oct 2005
- **Tabla 37.** Porcentajes de hembras ovíferas en los desembarque por puerto, recurso y mes
- Tabla 38. Parámetros de las relaciones longitud-peso
- **Tabla 39.** Captura (en N°) de individuos de jaiba registrados en los muestreos realizados a bordo de botes tramperos.
- **Tabla 40.** Fauna acompañante (en número de individuos) registrada en los muestreos realizados a bordo de botes tramperos.
- **Tabla 41.** Número de muestreos con pesca por especie de jaiba, número de viajes en que se descartó una fracción de esa especie y proporción de viajes con descarte. Bahía de Ancud.

- **Tabla 42.** Captura y descarte en número, por especie de jaiba capturada en los viajes muestreados.
- **Tabla 43.** Tipo de integración de las empresas procesadoras.
- **Tabla 44.** Empresas procesadoras de la X Región y su participación en la producción en la elaboración de productos cuya materia prima es jaibas. 2004.
- **Tabla 45.** Manejo de información por parte de los pescadores
- **Tabla 46.** Importancia de la jaiba en el portafolio de productos de las empresas procesadoras
- Tabla 47. Procedencia del abastecimiento de materia prima
- **Tabla 48.** Precios pagados en playa (\$/kg) de recursos bentónicos por centro de monitoreo. X y XI Región. Nov 2004 Octubre 2005 por recluta.
- **Tabla 49.** Parámetros de selectividad de machos y hembras en la X Región.
- **Tabla 50.** PBR estimados desde las curvas de rendimiento y biomasa por recluta
- **Tabla 51.** Parámetros de selectividad de machos y hembras en la XI Región.
- **Tabla 52.** Parámetros de selectividad de machos y hembras en la XI Región.
- **Tabla 53.** Temas de interés planteados por los usuarios de la pesquería de jaibas de las Regiones X y XI.

1. ANTECEDENTES

En Chile, durante el año 2004, la pesquería artesanal aportó al desembarque nacional 1.692.150 t, equivalente al 28%, distribuidos en la pesca de 70 peces, 14 algas, 33 moluscos, 20 crustáceos, 2 equinodermos y 1 urocordado, los que aportaron con el 59%, 23%, 14%, 1%, 3%, 0,1%, respectivamente, a esta cifra de desembarque.


A nivel de grupo de especies los recursos que registraron los mayores aportes al desembarque fueron: anchoveta (46,6%), pelillo (25%), jibia (69%), jaibas (42%) y erizo (99,5%).

La pesquería de jaibas está constituida por una variedad de especies: jaiba marmola (*Cancer edwardsii*), jaiba peluda o pachona (*Cancer setosus*), jaiba mora (*Homalaspis plana*), jaiba limón (*Cancer porteri*), jaiba panchote o cangrejo (*Taliepus dentatus*), jaiba patuda (*Taliepus marginatus*), jaiba reina (*Cancer coronatus*) y jaiba remadora (*Ovalipes trimaculatus*), siendo la más importante, en términos de volumen de extracción, la primera de ellas. De hecho, en el año 2004, la jaiba marmola contribuyó con el 86% al desembarque nacional de jaibas le siguió en magnitud la jaiba peluda (3%) y la jaiba mora (2%) (**Fig. 1**).

En la última década (1994-2004) el desembarque de jaibas ha fluctuado entre 3.500 t y 7.200 t, desde 1999 se registraron desembarques superiores a las 6.000 t., destacando un aumento de 17% entre los años 2003 (5.081 t) y 2004 (6.147 t). Al igual que lo ocurrido con otros recursos bentónicos, la presión extractiva sobre jaibas es el resultado de una continua demanda de materia prima generada por las empresas procesadoras.

De acuerdo con las estadísticas oficiales de desembarque, la actividad sobre estos recursos se concentra principalmente en la X y XI Región, en donde las especies de mayor importancia son jaiba marmola y jaiba peluda a las que siguen en orden de importancia jaiba reina y jaiba mora.

Jaiba marmola, se distribuye desde Guayaquil (Ecuador) hasta el Estrecho de Magallanes. Vive sobre fondos rocosos, arenosos y de arena-fango en la zona submareal. Se ha detectado su presencia a una profundidad de hasta 80 m. Los machos presentan quelas más grandes y su caparazón es más ancho que las hembras. Desovan durante el verano (Zagal *et al.*, 2001).

Jaiba peluda, se distribuye desde Arica a la Península de Taitao; también en Ecuador y Perú (Retamal, 1994). Habita la zona intermareal y submareal, detectándose su presencia a una profundidad de 80 m. Los machos son de mayor tamaño que las hembras. Estas se diferencian por tener el abdomen más ancho y quelípedos más pequeños. Las hembras ponen sus huevos preferentemente en invierno y verano (Zagal *et al.*, 2001).

En la actualidad la pesquería de jaiba a nivel nacional se encuentra bajo el régimen de libertad de pesca. Posee una talla mínima de extracción de 120 mm de ancho del cefalotórax y prohibición de capturar hembras que portan huevos

En general, las medidas de conservación aplicables en Chile para estos recursos, se resumen en los artículos 3 y 4 de la Ley de Pesca, los que consideran vedas biológicas o extractivas, fijación de tamaños o pesos mínimos de extracción por especie y área y márgenes de tolerancia, cuotas y regulación de las dimensiones y características de las artes y los aparejos de pesca. A la fecha y de acuerdo al conocimiento de la biología de estos recursos, la Subsecretaría de Pesca ha definido la siguiente regulación. (DS. Nº 9 de 1990 del Ministerio de Economía, Fomento y Reconstrucción):

- Veda indefinida a nivel nacional de hembras de las especies jaiba panchote;
 jaiba patuda; jaiba remadora y jaiba paco.
- Veda indefinida a nivel nacional de hembras ovígeras de las especies jaiba peluda; jaiba marmola y jaiba mora.
- Talla mínima de extracción de 120 mm de ancho cefalotoráxico para las especies jaiba peluda; jaiba marmola y jaiba mora, medidas entre los bordes externos del sector más ancho de la caparazón.
- En todo el territorio nacional, el transporte de las especies de jaibas en estado natural, sólo podrá realizarse con ejemplares vivos y, el transporte de carne de jaiba con la correspondiente Guía de Libre Tránsito.

La mayor parte de las medidas buscan maximizar el aprovechamiento en peso del recurso, el potencial reproductivo y a la vez, permitir la incorporación de los juveniles al stock desovante, restringiendo la explotación de hembras particularmente aquellas que portan huevos y maximizando la sobrevivencia de los individuos hasta el estado juvenil.

2. OBJETIVOS DEL PROYECTO

2.1 Objetivo General

Diagnosticar la situación actual de la pesquería y evaluar el perfeccionamiento de las normas de administración

2.2 Objetivos Específicos

- 2.2.1 Caracterizar la actividad extractiva del recurso jaiba en la X y XI Regiones.
- 2.2.2 Estimar la captura, esfuerzo y rendimientos de pesca, por especie, para las principales zonas o áreas de extracción, y su variación temporal.
- 2.2.3 Determinar la composición de tallas según sexo y la proporción sexual, por especie, en los desembarques, según el área o zona de procedencia de las capturas y el arte o sistema de pesca utilizado.
- 2.2.4 Determinar la fauna acompañante del recurso jaiba en los desembarques, según zona de procedencia de las capturas.
- 2.2.5 Caracterizar el canal de distribución asociado al recurso.
- 2.2.6 Proponer nuevas medidas de regulación u ordenamiento para la pesquería, sobre la base de un diagnóstico de la misma.

3. METODOLOGÍA

3.1 Especies objetivo de estudio

Los recursos objetivo de este proyecto son: jaiba marmola y jaiba peluda.

3.2 Cobertura geográfica y centros de muestreos.

Los antecedentes recopilados por IFOP a través de la ejecución de diversos proyectos, estadísticas oficiales de desembarque y registros de pescadores artesanales y embarcaciones, permitieron seleccionar como centros de muestreo permanente las caletas de: Carelmapu, Ancud, Quellón, Dalcahue y Puerto Chacabuco.

Los centros seleccionados cubren las regiones X y XI y son representativas de la actividad pesquera de estos recursos a nivel regional, característica que fue solicitada expresamente por el requirente.

3.3 Periodo de estudio

El proyecto tuvo una duración de quince meses. El periodo de recopilación de datos se inicio en noviembre del año 2004 y finalizó en octubre del año 2005. Los tres meses restantes, se destinaron a concluir con las etapas de recopilación, codificación, digitación, procesamiento, análisis y reporte de la información.

3.4 Fuentes de información

Las principales fuentes de información utilizadas fueron: i) buzos y patrones de las embarcaciones extractoras; ii) Intermediarios y/o comerciantes; iii) Personal de las

plantas de proceso; iv) Servicios Públicos: Serna<u>pesca</u>, Capitanías de puerto, Aduanas y Prochile. Complementariamente se utilizó información recopilada a través de otros proyectos desarrollados por IFOP e información bibliográfica referida a las especies en estudio.

3.5 Objetivo específico 2.2.1.

"Caracterizar la actividad extractiva del recurso jaiba en la X y XI Regiones"

Para alcanzar este objetivo se recopiló información relativa a: i) el número de embarcaciones que operaron sobre el recurso jaiba; ii) las características geométricas y funcionales de la flota; iii) los sistemas de pesca utilizados; iv) el número de pescadores y buzos participantes en la pesquería; v) régimen operacional de la flota; y vi) la ubicación espacial de las áreas de pesca visitadas por la flota.

La información se recopiló siguiendo el siguiente procedimiento:

- En cada uno de los centros de monitoreo seleccionados los muestreadores aplicaron diariamente a cada embarcación extractora de jaibas, la encuesta denominada "Registro Diario de Captura" registrando todas las variables asociadas a la actividad extractiva del viaje (Anexo 1). A su vez, se aplicaron encuestas que permitieron conocer las características funcionales y geométricas de la flota.
- En oficinas de Sernapesca Central se recopiló información disponible relativa al número de pescadores y embarcaciones inscritos por centro de desembarque, para los años 2001 a 2004 para ambas regiones.
- En forma paralela se revisaron las estadísticas de desembarque de jaibas a nivel de puerto registradas por el mismo Servicio, para ambas regiones.
- Se relacionaron ambas bases de datos para establecer los lugares coincidentes entre tipos de registros. Sobre el universo resultante al cruzar la información se aplicaron encuestas y realizaron entrevistas en terreno que

permitieron identificar el número real de usuarios de la pesquería en la Región.

- Complementariamente se recopilaron a través de las organizaciones de pescadores artesanales, nómina de pescadores y embarcaciones extractoras del recurso en las caletas que registraban los mayores niveles de desembarque.
- A partir de la información colectada a través del Registro diario de captura se identificaron las procedencias que eran explotadas por los pescadores.
 Posteriormente se georeferenciaron mediante el uso de GPS y cartas del Servicio Geográfico de la Armada (SHOA).

Los datos obtenidos mediante las diversas fuentes de información fueron ordenados, validados entre si y almacenados en archivos, lo que permitió su análisis posterior.

3.6 Objetivo específico 2.2.2.

"Estimar la captura, esfuerzo y rendimientos de pesca, por especie, para las principales zonas o áreas de extracción, y su variación temporal".

Para alcanzar este objetivo se implementó el plan de muestreo siguiente:

La población objetivo quedó definida por el conjunto de unidades pesqueras artesanales que operaron en la actividad extractiva del recurso jaiba en los cinco centros de desembarque seleccionados. La unidad de muestreo fue el viaje asociado a la embarcación. La información recopilada por viaje se entrega en el **Anexo 1** (Registro diario de captura). La recopilación de las variables que se indican en el plan de muestreo se realizó diariamente en cada caleta seleccionada. Se ejecutaron un total de 2.806 viajes de pesca, de las cuales 2.226 correspondieron a la X Región y 138 a la XI Región.

Notación

Índices:

i : Viajes i = 1, 2, ..., n, ..., m

 h^1 : Estrato h = 1, ..., H

 ϕ : Caletas $\phi = 1,2,..., \gamma$

e : Especies e = 1,2,...,E

Variables y Parámetros:

N : Número de viajes totales

n : Número de viajes en la muestra

x : Desembarque en número por viaje

 \overline{x} : Estimador del desembarque en número promedio por viaje en la muestra

 \hat{X} : Estimador del desembarque en número

 \hat{g} : Estimador de la proporción de especies en el desembarque

 \hat{Y} : Estimador del desembarque en peso

 \hat{U} : Estimador del rendimiento de pesca

E: Esfuerzo de pesca

 $\hat{\overline{W}}$: Estimador del peso medio

A. Desembarque²

a.1. Desembarque en número

El desembarque del recurso jaiba (total de especies) tuvo una orientación censal en los centros de monitoreo permanente. En la X Región esta variable fue medida en peso; en tanto, en la XI Región fue registrada en número, en concordancia con la

¹ El subíndice "h" representa el estrato zona de pesca, método de extracción y mes

² Para efectos de este proyecto se entenderá como sinónimos captura y desembarque, considerando que la captura es selectiva y que todo lo que se captura es desembarcado.

forma de transacción que se realiza en cada región. El desembarque que provino de una zona de pesca, método de extracción y mes de interés, se obtuvo integrando a través de las caletas mediante la siguiente expresión:

$$X_h = \sum_{\phi=1}^{\gamma} X_{\phi h}$$

Para el caso de la X Región la estimación del desembarque en número está dado por:

$$\hat{X}_h = \sum_{\phi=1}^{\gamma} \frac{Y_{\phi h}}{\overline{w}_{\phi}}$$

a.2 Desembarque en número por especie

Para obtener el desembarque a nivel de especie, se realizó una estimación de la proporción de especies a partir de una muestra de viajes.

Estimador de la proporción de especie

El diseño de muestreo para estimar la proporción de especies correspondió a un muestreo estratificado aleatorio bietápico, donde el estrato correspondió a la zona de pesca, método de extracción y el mes. Las etapas en este caso correspondieron a una selección de viajes y de ejemplares al interior del viaje.

$$g_{he} = \sum_{i=1}^{n_h} \frac{x_{hi}}{X_0} \cdot g_{he}$$

donde,

$$g_{hei} = \frac{x_{hei}}{x_{hi}} \qquad X_0 = \sum_{i=1}^{n_h} x_{hi}$$

Estimador del desembarque por especie

El diseño de muestreo para estimar el desembarque por especie, correspondió a un diseño relacional que integró el desembarque de jaibas por zona, método de extracción y mes (X_h) y un estimador de la proporción de especies del desembarque para dicha escala (g_{he}) .

$$\hat{X}_{he} = X_h g_{he}$$

• Estimador de la varianza del estimador \hat{X}_{he}

$$\hat{V}(\hat{X}_{he}) = X_h^2 * \hat{V}(g_{he})$$

a.3 Desembarque en peso por especie

• Estimador del desembarque en peso por especie

El estimador del desembarque en peso se construyó a partir del estimador del desembarque en número a la especie y el estimador del peso medio del ejemplar. Con respecto al diseño asociado al peso medio, éste vincula los diseños para la estimación de la estructura de tallas y la estimación del peso medio a la talla obtenido de la relación longitud-peso, cuya formulación se detalla en el punto 3.6.

$$\hat{Y}_{he} = \hat{X}_{he} \hat{\overline{W}}_{he}$$

• Estimador de la varianza del estimador \hat{Y}_{he}

$$\hat{V}(\hat{Y}_{he}) = \hat{X}_{he}^2 \hat{V}(\hat{\overline{W}}_{he}) + \hat{\overline{W}}_{he}^2 \hat{V}(\hat{X}_{he}) - \hat{V}(\hat{\overline{W}}_{he}) \hat{V}(\hat{X}_{he})$$

B. Esfuerzo de pesca

El esfuerzo fue medido en unidades de horas de buceo y horas de reposo, según el método de pesca empleado y se registró a nivel de viaje en aquellas caletas donde la flota operó con un régimen de extracción diario. Se dispuso de un indicador del esfuerzo por puerto, zona de pesca, método de extracción y mes $(E_{\phi h})$, integrando a través de los puertos. Finalmente el esfuerzo aplicado en una zona de pesca, método de extracción y mes de interés, se obtuvo a través de la siguiente expresión:

$$E_h = \sum_{\phi=1}^{\gamma} E_{\phi h}$$

C. Rendimiento de pesca

El rendimiento fue estimado a nivel de zona de pesca, método de extracción y mes.

• Estimador del rendimiento de pesca por especie

El estimador del rendimiento de pesca en número y peso se construyó a partir del estimador del desembarque en número y peso y el esfuerzo de pesca global, dado por los siguientes estimadores:

$$\hat{U}_h = \frac{\hat{X}_h}{E_h} \quad o' \quad \frac{\hat{Y}_h}{E_h}$$

3.7 Objetivo específico 2.2.3.

"Determinar la composición de tallas según sexo y la proporción sexual, por especie, en los desembarques, según el área o zona de procedencia de las capturas y el arte o sistema de pesca utilizado".

Los datos requeridos para alcanzar este objetivo fueron obtenidos mediante la ejecución de muestreos en los centros de desembarque (**Anexo 1** – formulario muestreo biológico de jaiba). El número de muestreos biológicos correspondientes a la proporción de especies en las capturas, mediciones de largo y ancho de cefalotórax y presencia de hembras ovíferas, fue de 239 para la X Región y de 69 para la XI Región.

Los datos obtenidos permitieron además, estimar la talla media por especie, proporción de ejemplares bajo la talla mínima por especie, la proporción de hembras ovíferas, el peso medio por especie y la relación talla-peso. La talla media fue utilizada en conjunto con la composición de tallas, para el estudio de la estructura de tamaños de los ejemplares en el desembarque.

El plan de muestreo aplicado se describe a continuación. Los datos recopilados mediante la ejecución de muestreos biológicos unidos a los registros de la actividad extractiva permitieron hacer las estimaciones requeridas para alcanzar el objetivo.

Notación

Índices:

i : Viajes i = 1,2,...,n,...,N

k : Longitud del ejemplar k = 1,2,...,K

h : Estrato h = 1, ..., H

e : Especies e = 1,2,...,E

s : Sexo s = 1 (machos), 2 (hembras)

Variables y Parámetros:

N : Número de viajes totales

n : Número de viajes en la muestra

x : Desembarque en número por viaje

 \bar{x} : Estimador del desembarque en número promedio por viaje en la muestra

 p_k : Estimador de la proporción a la talla en el desembarque

*x** : Número ejemplares en la muestra

l : Longitud del ejemplar

 \overline{l} : Estimador de la longitud media

w : Peso de un ejemplar

 \overline{w} : Estimador del peso de un ejemplar obtenido desde la relación longitud peso

 $\hat{\vec{W}}$: Estimador del peso medio

Para efecto de estimación de estos indicadores se definieron siete zonas de pesca, que corresponden a la agrupación de procedencias en base a la cercanía entre ellas. Las zonas son las que se indican en el cuadro siguiente:

Cuadro 1

Procedencias agrupadas por zonas para la estimación de la composición de los indicadores de la talla del desembarque separadas por sexo.

Zona	Procedencias
1	Bahía Ancud (9003), Mutrico (9065) y Golfo de Quetalmahue (9081)
2	Ahui (9000), Isla Cochinos (9015), Punta Corona (9022), Punta Chocoi (9110) y
	Punta Lenqui (9112)
3	Calen (8595), Puerto San Juan (9165), Punta Tenaun (9166) y Quetalco (9705)
4	Rilan (8760), Isla Chelín (9182) y Isla Lemuy (9134)
5	Curaco de Velez (9164) y Huyar (9703)
6	Area comprendida entre los 45°07'00" L.S. y 45°22'00" L.S.
7	Area comprendida entre los 45°26'00" L.S. y 45°47'00" L.S.

Posteriormente, las distribuciones de talla por período, se presentaron mediante polígonos de frecuencia (a diferencia de las registradas por puerto, graficadas en histogramas), con el fin de mostrar simultáneamente en un mismo gráfico varias distribuciones (seis) con fines comparativos.

A. Estructura de talla y talla media de los ejemplares en el desembarque

a.1 Estimador de la estructura de talla del desembarque por especie y sexo³

El plan de muestreo para estimar la estructura de tallas corresponde a un muestreo estratificado aleatorio bietápico, donde las unidades de primera etapa representan los viajes y las de segunda etapa a los ejemplares. El estrato corresponde a la zona de pesca, método de extracción y período bimensual.

$$p_{hek} = \sum_{i=1}^{n_h} rac{\mathcal{X}_{hi}}{\mathcal{X}_h} \cdot p_{heki}$$

donde.

$$p_{heki} = \frac{x_{heki}^*}{x_{hei}^*} \qquad x_h = \sum_{i=1}^{n_h} x_{hi}$$

• Estimador de la varianza del estimador p_{hek}

$$\hat{V}[p_{hek}] \doteq \left[1 - \frac{n_h}{N_h}\right] \frac{1}{n_{he}(n_{he} - 1)} \sum_{i=1}^{n_{he}} \frac{x_{hei}^2}{\overline{x}_{he}^2} \left[p_{heki} - p_{hek}\right]^2 + \frac{n_h}{N_h n_{he}^2} \sum_{i=1}^{n_{he}} \frac{x_{hei}^2}{\overline{x}_{he}^2} \left[1 - \frac{x_{hei}^*}{x_{hei}}\right] \hat{S}_{heki}^2$$

donde,

$$\overline{x}_{he} = \frac{1}{n_{he}} \sum_{i=1}^{n_{he}} x_{hei} \qquad \qquad \hat{S}_{heki}^2 = \frac{1}{x_{hei}^* - 1} p_{heki} [1 - p_{heki}]$$

a.2 Estimador de la talla media de los ejemplares desembarcados por especie

La talla media se obtuvo según una estimación de la esperanza de la longitud de los ejemplares, a partir de las estructuras de talla por sexo estimada de acuerdo al diseño señalado anteriormente.

³ Para simplificar en la notación se omite el subíndice del sexo

$$\hat{E(l_{he})} = \overline{l_{he}} = \sum_{k=1}^{K} l_k p_{hek}$$

• Estimador de la varianza del estimador \overline{l}_{he}

$$\hat{V}(\hat{l}_{he}) = \sum_{k=1}^{K} l_k^2 \hat{V}(p_{hek})$$

B. Proporción de ejemplares bajo talla mínima en el desembarque

b.1 Estimador de la proporción bajo talla mínima por especie

La proporción de ejemplares bajo una talla mínima en el desembarque se estimó a partir de la estructura de tallas correspondientes, empleando la siguiente expresión:

$$p_{he(k \le k_o)} = \sum_{k=1}^{k_0} p_{hek}$$

• Estimador de la varianza del estimador $p_{he(k \le k_0)}$

$$\hat{V}(p_{he(k \le k_o)}) = \sum_{k=1}^{k_0} \hat{V}(p_{hek})$$

C. Proporción sexual en el desembarque

c.1 Estimador de la proporción sexual en el desembarque por especie

El diseño de muestreo para estimar la proporción sexual corresponde a un muestreo estratificado aleatorio bietápico, donde las unidades de primera etapa representan

los viajes y las de segunda etapa a los ejemplares. El estrato corresponde a la zona de pesca, método de extracción y período bimensual.

$$p_{hes} = \sum_{i=1}^{n_h} \frac{x_{hi}}{x_h} \cdot p_{hesi}$$

donde,

$$p_{hesi} = \frac{x_{hesi}^*}{x_{hoi}^*} \qquad x_h = \sum_{i=1}^{n_h} x_{hi}$$

• Estimador de la varianza del estimador \hat{p}_{hek}

$$\hat{V}[p_{hes}] \doteq \left[1 - \frac{n_h}{N_h}\right] \frac{1}{n_{he}(n_{he} - 1)} \sum_{i=1}^{n_{he}} \frac{x_{hei}^2}{\overline{x}_{he}^2} \left[p_{hesi} - p_{hes}\right]^2 + \frac{n_h}{N_h n_{he}^2} \sum_{i=1}^{n_{he}} \frac{x_{hei}^2}{\overline{x}_{he}^2} \left[1 - \frac{x_{hei}^*}{x_{hei}}\right] \hat{S}_{hesi}^2$$

donde,

$$\overline{x}_{he} = \frac{1}{n_{he}} \sum_{i=1}^{n_{he}} x_{hei} \qquad \qquad \hat{S}_{hesi}^2 = \frac{1}{x_{hei}^* - 1} p_{hesi} [1 - p_{hesi}]$$

D. Proporción de hembras ovíferas en el desembarque

d.1 Estimador de la proporción de hembras ovíferas por especie

El diseño de muestreo para estimar la proporción de hembras ovíferas corresponde a un muestreo estratificado aleatorio bietápico, donde las unidades de primera etapa representan los viajes y las de segunda etapa a los ejemplares. No obstante, no se utilizó el estimador asociado al diseño propuesto dada la escasa presencia de ejemplares en esta condición. La proporción se estimó como una proporción simple, correspondiente al cuociente de hembras ovíferas sobre el total de hembras.

E. Peso medio por especie

e.1 Estimador del peso medio de los ejemplares desembarcado por especie

El peso medio de los ejemplares se obtuvo según una estimación de la esperanza del peso de las jaibas, a partir del peso medio a la talla obtenido de la relación pesolongitud y la estructura de talla estimada de acuerdo al diseño señalado en el punto 3.6 A.

$$\hat{E}(W_{he}) = \hat{\overline{W}}_{he} = \sum_{k=1}^{K} \overline{W}_{hek} \, p_{hek}$$

Donde el peso medio a la talla se estima a partir de un modelo que relaciona de manera directa el peso y la talla de un ejemplar, que ha sido descrito por la siguiente relación:

$$w = \alpha l^{\beta} \varepsilon$$

El término aleatorio " ε ", denominado error o perturbación, puede ser asumido, para efectos de estimación, como aditivo o multiplicativo. En este caso se asumió que la perturbación aleatoria inherente al modelo es de tipo multiplicativa, además de considerar que el logaritmo de ésta, sigue una distribución normal, independiente para cada observación, con media cero y varianza constante.

El modelo entonces queda expresado por la siguiente expresión, cuyos parámetros fueron estimados a través del método de mínimos cuadrados.

$$\ln(w_i) = \ln(\alpha) + \beta \ln(l_i) + \varepsilon_i$$
$$y_i = \alpha' + \beta x_i + \varepsilon_i$$

• Estimador de la varianza del estimador $\, \hat{\! W}_{\!\scriptscriptstyle he} \,$

$$\hat{V}(\hat{\overline{W}}_{he}) = \sum_{k=1}^{K} \hat{V}(\overline{w}_{hek} p_{hek})$$

$$\hat{V}(\overline{w}_{hek}\,p_{hek}) = \overline{w}_{hek}^2 \hat{V}(p_{hek}) + p_{hek}^2 \hat{V}(\overline{w}_{hek}) - \hat{V}(\overline{w}_{hek}) \hat{V}(p_{hek})$$

donde:

$$\hat{V}(\overline{w}_{hek}) = \frac{1}{n_{hek}^*(n_{hek}^* - 1)} \sum_{i=1}^{n_{hek}^*} (w_{hekj} - \overline{w}_{hek})^2$$

F. Estimación de Totales

Dentro de los indicadores propuestos se han entregado estimadores a nivel de estrato, luego para obtener una estimación global de un parámetro " θ " y su varianza, para los estimadores de proporción como es la estructura de talla, proporción sexual, etc., un estimador integrado corresponderá a una combinación lineal ponderada de las estimaciones parciales, de manera que la estructura genérica del estimador global y su varianza está dada por:

$$\theta: \ \hat{\theta}_{st} = \sum_{h=1}^{L} W_h \hat{\theta}_h; \ tal \ que \ W_h \ \varepsilon \]0,1[\quad \land \quad \sum_{h=1}^{L} W_h = 1$$

$$\hat{V}(\hat{\theta}_{st}) = \sum_{h=1}^{L} W_h^2 \hat{V}(\hat{\theta}_h)$$

G Coeficiente de Variación

Como una medida de la precisión de las estimaciones de los parámetros se obtuvo una estimación del coeficiente de variación.

Estimador del Coeficiente de Variación para un estimador de un parámetro

La estimación del coeficiente de variación de un parámetro, genéricamente, fue obtenida mediante la siguiente relación:

$$CV(\hat{\theta}) = \frac{\sqrt{\hat{V}(\hat{\theta})}}{\hat{\theta}}$$

H Estimación de tamaños de muestra para estructuras de tallas

Para determinar tamaños de muestra para estimar los parámetros de interés, en general se adoptó un procedimiento de simulación que considera varios escenarios de muestreo en el marco del diseño asociado a la estimación de cada parámetro (Young *et al.*, 2002).

Datos

El conjunto de datos seleccionados y utilizados en la simulación debe ser lo suficientemente grande como para suponer que en él se recoge el rango de variabilidad real observado en la población en estudio (desembarque/captura), dado que éstos constituirán la población referencial para cada variable de interés. Sin embargo, es importante señalar que dada la escala de resolución espacial (procedencia) de recopilación de datos en las pesquerías bentónicas, no es frecuente encontrar muestreos intensivos a esta escala, lo que dificulta la aplicación del procedimiento de simulación propuesto y a su vez, limita incorporar un mayor número de procedencias en el análisis.

En los Cuadros 2 y 3 se detallan las características de las muestras analizadas para cada una de las procedencias.

Cuadro 2

Caracterización de la muestra analizada en el estudio de la estructura de tallas por procedencia.

Recurso	Región	Procedencia	Año	Meses	Número Viajes	Número Ejemplares	Rango Longitud	Longitud Promedio
Jaiba marmola	Χ	9000	1997	7-12	22	1437	63-109	82,2
(Trampa)		9003	1997	10 - 12	20	1349	69-113	83,5
		9003	1998	10 - 12	14	989	66-107	81,1
		9003	1998	2-3	14	1101	68-105	81,9
		9022	1998	8-12	11	1383	63-113	81,1
		9110	1998	1-2	13	932	70-113	85,0
		9222	1997	7-9	11	839	61-125	92,4
		9245	1997	7-8	14	1080	63-124	91,1
		9270	1997	7	13	1008	42-143	92,4
(Buceo)	Χ	9245	1997	8-11	10	760	65-125	92,5

Cuadro 3

Caracterización de la muestra analizada en el estudio de la relación peso-longitud por procedencia.

Recurso	Región	Procedencia	Año	Meses	Número	Intervalo	Intervalo	Peso
					Ejemplares	Longitud (mm)	Peso (g)	Promedio
Jaiba marmola	Χ	9245	1997	7-8	1035	101 - 179	138 -1290	459
		9270	1997	7	924	81 - 191	118 -1374	480

Procedimiento de simulación

Dado que no se tuvo muestreos intensivos de ejemplares al interior del viaje, como para realizar un remuestreo en un esquema bietápico (viajes y ejemplares), el procedimiento consistió en una selección aleatoria de viajes, donde se consideró el total de ejemplares medidos en el viaje⁴. El experimento consistió en extraer un

⁴ Número que fluctuó en torno a los 80 ejemplares por viaje

número creciente de viajes, que fluctuó entre 2 y 24, y para cada de tamaño de muestra se realizaron 1000 réplicas (**Anexo 2**).

En el estudio de la relación longitud-peso se obtuvieron muestras aleatorias de ejemplares por estrato de talla a partir del conjunto de datos seleccionados. El experimento consistió en extraer un número fijo de ejemplares en cada categoría de talla (3 mm), de manera de garantizar muestras al interior de cada clase de categoría. El número de ejemplares extraídos fluctuó entre 3 y 40 por categoría de talla, y para cada combinación de tamaños de muestra se realizaron 300 simulaciones.

Para la estimación de la estructura de tallas del desembarque, se seleccionaron muestras aleatorias de unidades de primera y segunda etapa a partir del conjunto de datos de viajes y ejemplares medidos. El experimento consistió en extraer un número creciente de viajes y al interior de éste de 10 a 200 ejemplares. Para cada combinación de tamaño de muestra, se seleccionaron 300 muestras.

Con el total de datos seleccionados para el análisis, se estimó la estructura de talla, utilizando el estimador ya especificado (Sección 3.6 A), composición de tamaños que se asume como la poblacional. De estos datos, se toman muestras aleatorias para diferentes combinaciones de tamaños de muestra (viajes, ejemplares) a partir de las cuales se estima la estructura de talla haciendo uso del estimador planteado, y siguiendo la propuesta de Andrew & Chen (1997) se comparan con la estructura poblacional, estimando un índice de error. Este índice promedia los desvíos cuadráticos acumulados a través de todas las tallas entre la distribución de frecuencia de longitud "poblacional" y aquellas construidas con las muestras.

$$IE = \frac{\sum_{s=1}^{S} \sqrt{\sum_{k=1}^{K} (p_{ks} - p_k)}}{S}$$

Donde p_{ks} es la proporción estimada a la talla k en la s-ésima simulación y p_k es la proporción de captura en el intervalo de talla k "poblacional".

Es importante señalar que no se ha definido un nivel de aceptación del índice de error para determinar el tamaño de muestra, el criterio se basa en la tendencia que presenta el índice frente a las diferentes combinaciones de tamaño de muestra. La recomendación del tamaño de muestra se estableció en el nivel a partir del cual un aumento en las unidades de primera y segunda etapa no genera una mejora sustantiva en la precisión de la estimación, criterio que debió ser compatibilizado con los costos involucrados.

De igual manera se obtiene el coeficiente de variación de la longitud media de los ejemplares capturados de la siguiente forma:

$$CV(\overline{l}) = \frac{\sqrt{\hat{V}(\overline{l})}}{\overline{l}}$$

Donde \overline{l} y $\hat{V}(\overline{l})$ corresponden a longitud media y a su varianza, estimadas de la siguiente manera:

$$\overline{l} = \frac{\sum_{s=1}^{S} \overline{l}_{s}}{S}; \qquad \hat{V}(\overline{l}) = \frac{\sum_{s=1}^{S} (\overline{l}_{s} - \overline{l})^{2}}{S - 1}$$

Donde $\overline{l_s}$ es la longitud media estimada en la s-ésima simulación y \overline{l} es la media estimada con el total de ejemplares en la muestra. Este parámetro se obtuvo según una estimación de la esperanza de la longitud, a partir de la estructura de talla estimada.

El porcentaje de individuos bajo una talla de referencia ($p_{(k < k_0)}$), se obtuvo acumulando las proporciones bajo la talla de interés, obtenidas de la estimación de la distribución de talla (ver <u>punto 3.7 A</u>). Se analizó el comportamiento del coeficiente de variación de este índice.

$$CV(p_{(k < k_0)}) = \frac{\sqrt{\hat{V}(p_{(k < k_0)})}}{\overline{p}_{(k < k_0)}}$$

Donde $\overline{p}_{(k< k_0)}$ y $V(p_{(k< k_0)})$ corresponden a la media y la varianza, estimadas de la siguiente manera:

$$\overline{p}_{(k < k_0)} = \frac{\sum_{s=1}^{S} p_{s(k < k_0)}}{S} ; \qquad \hat{V}(p_{(k < k_0)}) = \frac{\sum_{s=1}^{S} (p_{s(k < k_0)} - p_{(k < k_0)})^2}{S - 1}$$

Donde $p_{s(k< k_0)}$ es la proporción bajo la talla estimada en la s-ésima simulación y $p_{(k< k_0)}$ es la proporción bajo la talla estimada con el total de ejemplares en la muestra (valor poblacional).

I Relación longitud peso

El modelo utilizado para describir la relación longitud-peso corresponde al indicado en el punto E. Para poder comparar los resultados obtenidos de los ajustes de la relación talla peso corporal, se utilizó un modelo lineal con variables indicadoras (Neter et al., 1990). Estas variables indican la presencia o ausencia de un factor en una observación dada y se les conoce también como variables dummy. De este modo para una comparación de dos regresiones se ajusta un modelo como el siguiente:

$$Y_i = \alpha_0 + \alpha_1 X_i + \alpha_2 D_i + \alpha_3 (D_i X_i) + u_i$$

En este modelo α_2 es el intercepto diferencial y α_3 es el coeficiente de pendiente diferencial, los cuales indican en cuanto difieren los parámetros estimados de cada regresión. La variable respuesta Y corresponde al peso de los ejemplares en escala

logarítmica, X corresponde a la talla de los individuos, también en escala log y D es la variable indicadora. Este tipo de modelo con variables explicatorias cualitativas y cuantitativas se conoce como modelo de análisis de covarianza (Dobson, 1983).

Los datos utilizados en este análisis se seleccionaron en base a una revisión de los desembarques ocurridos durante el periodo de estudio por puerto y procedencia y los muestreos realizados. La combinación de ambos tipos de información permitió emplear como criterio de selección las procedencias que registraban los mayores desembarques y número de ejemplares muestreados por sexo, seleccionándose los datos que a continuación se señalan:

Recurso	Puerto	Procedencia	Sexo	Periodo
J. marmola	Ancud	Isla Cochinos	Ambos sexos	Feb. 05 - Oct. 05
J. marmola	Ancud	Punta Corona	Ambos sexos	Nov. 04 - Jun. 05
J. marmola	Ancud	Bahía Ancud	Ambos sexos	Nov. 04 - Sep. 05
J. marmola	Dalcahue	Calén	Ambos sexos	Nov. 04 - Jul 05
J. marmola	Dalcahue	Rilán	Ambos sexos	Nov. 04 - Sep 05.
J. marmola	Dalcahue	Curaco de Vélez	Ambos sexos	Nov. 04 - Ago 05
J. marmola	Dalcahue	Isla Chelín	Ambos sexos	Nov. 04 - Abr 05
J. marmola	Dalcahue	Huyar	Ambos sexos	May. 05 - Sep 05
J. marmola	Quellón	Curanue	Ambos sexos	Jun. 05 - Jul 05
J. marmola	Quellón	Isla Traiguén	Ambos sexos	Nov. 04 - Feb. 05
J. marmola	Pto Chacabuco	Islas Costas	Ambos sexos	Nov. 04 - Oct. 05
J. marmola	Pto Chacabuco	Pilcomayo	Ambos sexos	Dic. 04 - Mar 05
J. marmola	Pto Chacabuco	Cte. La Vaca	Ambos sexos	Dic 04 - Oct 05
J. peluda	Ancud	Principales	Ambos sexos	Dic 04 - Oct 05
		procedencias		
J. reina	Ancud	Principales	Machos	Nov. 04 - Oct 05
		procedencias		
J. reina	Dalcahue	Principales	Machos	Nov. 04 - Sep 05
		procedencias		

3.8 Objetivo específico 2.2.4.

"Determinar la fauna acompañante del recurso jaiba en los desembarques, según zona de procedencias de las capturas".

Para efectos de recopilar información de la fauna acompañante, se realizaron 28 embarques a las áreas de pesca a bordo de embarcaciones tramperas. Se cubrió particularmente la zona de Ancud, debido a su importancia en términos de desembarques y número de viajes.

Se recolectaron muestras al momento del virado de las trampas en cada viaje. Los ejemplares colectados fueron colocados en recipientes plásticos y fijados en formalina al 10% y/o en mezcla de alcohol-formalina. Las taxa que presentaron cuerpos blandos (actinias) se fijaron siguiendo la metodología señalada por González et. al. (1988). Las otras muestras fueron guardadas en bolsas plásticas. Todas las muestras fueron debidamente etiquetadas, consignando: lugar de captura, fecha de recolección, nombre del recolector, tiempo de permanencia de las trampas en reposo.

Paralelamente, se consultó a los tripulantes de las lanchas tramperas antecedentes relativos al tipo de sustrato predominante en la zona de extracción.

En el laboratorio, el material fue clasificado por grupos generales: crustáceos, moluscos, peces. La identificación definitiva del organismo a nivel específico, se realizó una vez que se comparó con el material depositado en las colecciones de la Sección Hidrobiología del Museo Nacional de Historia Natural (MNHNCL) ubicado en Santiago de Chile. Paralelamente a la comparación de los ejemplares colectados con los holotipos y paratipos depositados en el museo se reforzó esta identificación con el programa BIOTICA 4.0 implementado por el MNHNCL. Una vez determinada

la especie, se procedió a señalar por procedencia la presencia en número, el tamaño de los ejemplares y su sexo.

La información recopilada se procesó y los resultados fueron almacenados en tablas *ad-hoc*, por zona y centro de muestreo.

3.9 Objetivo específico 2.2.5.

"Caracterizar el canal de distribución asociado al recurso"

Se analizó el nivel primario y secundario que conforman la estructura y conducta del canal de distribución del recurso jaiba. Se describió el canal de distribución y los mecanismos de coordinación entre los agentes que lo componen. En ese proceso fueron identificados pescadores, compradores y las plantas de elaboración que participan en la red de comercialización de la jaiba.

Se analizaron las variables claves que dan cuenta de la conducta que manifiestan los agentes oferentes, la actividad exportadora y la dinámica de los precios en los distintos mercados que componen el sistema de comercialización.

Para poder efectuar estos análisis se recopiló información proveniente de dos fuentes:

Fuente Primaria.

En terreno se efectuaron entrevistas dirigidas a agentes claves del canal de distribución (Pescadores-Intermediarios-Procesadores) a quienes se les aplicó un cuestionario estructurado y específico con el propósito de facilitar el proceso posterior de análisis (**Anexo 3**). Las entrevistas estuvieron orientadas a recopilar los antecedentes requeridos en la propuesta y otros de orden general que permitieron tener una visión más amplia de la dinámica comercial del recurso. Para cada tipo de

informante se abordaron las siguientes temáticas:

Pescadores

- Número y tipo de compradores al cual venden sus capturas
- Disponibilidad de instalaciones de conservación del recurso
- Manipulación de las capturas tanto a bordo como en tierra
- Tipo de dependencia de los comerciantes
- Manejo de información sobre el mercado
- Precios de playa y factores que definen sus fluctuaciones
- Capacidad de gestión comercial
- Recomendación de medidas de administración de la jaiba por parte de los agentes del mercado

Comprador (intermediario)

- Características del suministro de las capturas (Ej. regularidad)
- Número y tipo de mercado al cual abastece
- Prácticas de manipulación del producto
- Tipo de dependencia comercial con los pescadores
- Recomendación de medidas de administración de la jaiba por parte de los agentes del mercado

Planta de Proceso

- Número y localización de plantas que procesan jaibas
- Formas de proceso y tipo de productos que elabora
- Factores que inciden en la elaboración del tipo de producto
- Mercado al cual comercializa los productos
- o Tipo de integración de la planta
- Recomendación de medidas de administración de la jaiba por parte de los agentes del mercado

La recopilación de información, actividad que se ejecutó en los puertos de mayor importancia extractiva de la X Región y XI Región, se levantó en dos ocasiones durante el desarrollo del proyecto En el caso de los extractores se efectuaron reuniones y entrevistas con pescadores de cada centro de muestreo, los cuales representaban a tripulantes de naves extractoras de jaibas mediante trampas, buzos mariscadores y extractores de jaibas ubicados en faenas (XI Región): En una primera instancia se les explicó los alcances del proyecto, se intercambiaron opiniones, procediendo luego a aplicar la encuesta correspondiente.

En el caso de proveedores o intermediarios, se entrevistó a los 3 principales (2 en la X Región y 1 en la XI Región) y se aplicó la encuesta correspondiente.

Para determinar las empresas procesadoras de ambas regiones, se utilizó como base la información proporcionada por Sernapesca, que da cuenta de la producción informada por las plantas. Mediante este procedimiento se estableció que 23 industrias procesaron jaibas durante el año 2004 y parte del 2005. En este universo se asumió como objetivo visitar y entrevistar a 8 empresas ubicadas en la X Región, cuyos volúmenes de producción en conjunto representaron el 99% del período analizado. Sin perjuicio de lo anterior, se visitaron otras 3 plantas de la zona. En la XI Región se visitó y entrevistó con personal de la única procesadora de jaibas de la zona (**Cuadro 4**)

Cuadro 4

Agentes entrevistados durante el período de proyecto.

Empresa Exportadora	Entrevistado	Ubicación	
Transantartic	Sr. Luis Smith (Jefe de Planta)	Pto. Montt	
SIC MAROA LTDA.	Sr. Guillermo Roa (Gerente)	Quellon	
Pacific Austral	Sr. Pedro Veganzones (Gerente)	Ancud	
Marcelo Alvarez	Sr. Marcelo Alvarez (Gerente)	Chonchi	
Comercial Isla Grande LTDA	Sr. Cristian Maluenda (Gerente)	Ancud	
Congelados Marinos LTDA	Sr. Raúl Norambuena (Gerente)	Quellón	
Néstor Ciro Cárdenas	Sr. Néstor Ciro Cárdenas (Dueño)	Ancud	
La caleta del Caleuche	Sr. Jorge Teve (Dueño)	Ancud	
Soc. Pesquera SILGAR LTDA	Sr. Hardy Bello (Gerente)	Ancud	
Pesca Chile S.A	Sr. Emilio Rodríguez (Gerente)	Pto Chacabuco	
Yadran	Sr. José Cardenas (Gerente de Planta)	Quellón	
Proveedor	Entrevistado	Ubicación	
Proveedor	Juan Carlos Schneider	Ancud	
Proveedor	Carmen Pérez	Dalcahue	
Proveedor	Abel Gallardo	Pto. Chacabuco	
Pescador	Entrevistado	Ubicación	
Dueño Embarcación	Sr. Juan Carlos Perez	Dalcahue	
Dueño Embarcación	Sr. Ramón Oyarzo S.	Dalcahue	
Presidente Sindicato	Sra. Adriana Coliboro M.	Pto Aysen	
Representante Buzos	Sr. Patricio Vera	Ancud	
Representante Buzos	Sr. Juan Burgos	Ancud	
Representante Tramperos	Sr. Lautaro Burgos	Ancud	
Representante Tramperos	Sr. José Vargas	Ancud	
Representante Buzos	Sr. Juan Colidoro	Quellón	
Representante Buzos	Sr. José Barría	Quellón	

• Fuente secundaria

Se utilizó la "Base de datos de exportaciones" elaborada por IFOP a partir de información del Servicio Nacional de Aduanas de Chile. Se procesaron series de

datos históricos de las exportaciones de jaiba, contemplando la variable precio y cantidad exportada a partir de la obtención de los campos de la base madre: especie, línea de elaboración, sub productos, exportadores y mercados de destino.

Se solicitó y proceso información de Sernapesca para seguir la dinámica del desembarque, producción y la identificación de las plantas de proceso asociadas a la jaiba en los últimos años. Además, para conocer aspectos relevantes de los principales mercados externos al cual se destina la jaiba, se complementó la información de Aduanas con información generada por Prochile.

3.10 Objetivo específico 2.2.6.

"Proponer nuevas medidas de regulación u ordenamiento para la pesquería, sobre la base de un diagnóstico de la misma".

El desarrollo de este objetivo utilizó como base de información: i) los resultados obtenidos durante este estudio; ii) información bibliográfica; iv) socialización del proyecto con los distintos agentes y iii) los antecedentes biológico-pesquero recopilados en el marco del proyecto *Seguimiento de las pesquerías bentónicas* (1998-2004), desarrollado por el Instituto de Fomento Pesquero (IFOP). Con relación a este último punto es necesario señalar que los puntos de muestreo históricos de IFOP son: Ancud, Carelmapu, Dalcahue, Quellón y Puerto Chacabuco, por tanto, se dispone de información parcial de otros puertos de la Región. El análisis de estas piezas de información contribuyó a realizar un diagnóstico de la pesquería, sugerir medidas de regulación u ordenamiento y emitir una opinión sobre las ya existentes.

Se analizaron los distintos resultados entregados en los capítulos anteriores y se vincularon entre sí. La base de datos de registros de capturas y la de muestreos biológicos de IFOP, se revisó en términos de la completitud de los datos, su

consistencia y cantidad de datos. A partir de lo revisado, se estimó apropiado en términos temporales y de cobertura, analizar los datos recopilados entre los años 1998 y 2005, que cubren centros de monitoreo en ambas regiones.

Para fines de administración pesquera, se consideró relevante definir a partir de la información, lo siguiente:

- Dimensión de la actividad, en cuanto a número de embarcaciones que operaron regular o esporádicamente en el tiempo: Para este efecto, se consideró que una embarcación operó si a lo menos realizó 20 viajes de pesca en el periodo 1998-2005. Este criterio se adoptó dado que en ocasiones las embarcaciones de otros puertos de la región, desembarcan en los puertos monitoreados, generándose un registro de captura.
- Existencia de migración intra anual o estacional de la flota: Para este efecto, a
 partir de los antecedentes disponibles, se obtuvo para cada una de las
 embarcaciones registradas, el número de viajes muestreados por puerto durante
 todo el periodo y se contabilizó el número de embarcaciones que operó en sólo
 uno, dos o tres puertos.
- Distribución e importancia relativa de las zonas de pesca y su persistencia en el tiempo: Se obtuvieron mapas de la distribución espacial de las capturas y su importancia relativa a través de la suma de las capturas anuales, muestreadas de acuerdo a las procedencias registradas y georreferenciadas por IFOP.
- Efecto de la actividad sobre los stocks: Se evaluó a partir de un análisis separado y posteriormente integrado, el desempeño histórico de las siguientes variables:
 - Tendencia histórica del esfuerzo
 - ii) Tendencia histórica de las capturas
 - iii) Tendencia histórica del rendimiento de pesca

- iv) Estructuras de tallas de jaiba marmola y jaiba peluda
- v) Tallas medias y porcentaje bajo talla mínima legal por región

Dado que el sistema de muestreo permitió registrar tanto en tierra como a bordo la presencia de hembras ovíferas en las capturas, se evaluó el actual cumplimiento de las normas asociadas a dichas variables, a partir de la proporción de individuos bajo la talla mínima y de primera madurez sexual, en un estrato temporal mensual y por puerto de estudio.

Investigaciones referidas al manejo de recursos bentónicos, han orientado sus esfuerzos a implementar medidas reactivas *ad hoc* para cada recurso. Esta línea de investigación enfatiza la importancia de reconocer la estructura espacial multi-escala de los crustáceos bentónicos, sugiriendo la necesidad de considerar estrategias de explotación espacialmente explicitas, lo que se lograría en el corto plazo a través del análisis espacial y temporal de los indicadores del recurso. Bajo este enfoque, métodos convencionales de evaluación y manejo pesquero podrían no ser adecuados, sugiriendo que modelos meta-poblacionales son más propicios para evaluar estrategias de manejo alternativas, que incluyan tallas mínimas y controles espaciales.

Sin perjuicio de lo anterior, y considerando que el diseño y aplicación de modelos meta-poblacionales no están incluidos en los objetivos de este proyecto, se exploró como elemento diagnóstico los resultados del análisis de indicadores con la estimación de las mortalidades por pesca a partir del análisis de la curva de captura, y su comparación con aquellas consideradas de referencia biológica.

La especie estudiada fue jaiba marmola. Los niveles de mortalidad de referencia biológica de este recurso, fueron obtenidos desde un modelo de rendimiento y biomasa por recluta basado en longitud y diferenciado por sexo, modificado del

convencional modelo Thompson y Bell (1934). El modelo asume que una cohorte comienza su crecimiento al inicio de un período (en este caso anual) con un número arbitrario de individuos, N. El numero individuos que sobreviven al comienzo del próximo período (t>1) es representado por:

$$N_{t} = N_{t-1}e^{-Z_{a}}T$$

donde $Z_a=F_a+M$ es la tasa instantánea de mortalidad debido a causas naturales (M) y por motivos de la explotación (F). Como es posible ver, F es dependiente de la edad a. Para lograr esto, se utilizó un modelo de selectividad (S) basado en longitud que fue ajustado a una curva logística por medio de la siguiente relación,

$$S = \frac{1}{1 + e^{\alpha + \beta l}}$$

donde I es la longitud (en este caso ancho cefalotorácico) y los parámetros alfa-beta son utilizados como en el modelo. La edad fue convertida en longitud promedio a la edad, a través de los parámetros de crecimiento. De esta forma, la mortalidad por pesca, edad especifica (F_a) fue calculada como F_a = $F\Psi S$, donde Ψ es una matriz de conversión edad-longitud y F es un nivel de mortalidad de referencia.

La selección de este modelo se fundamenta principalmente en los escasos requerimientos de datos, ya que solamente se necesitó contar con registros de captura-esfuerzo y algunos parámetros de historia de vida. Aunque el modelo es una idealización y representación altamente simplificada de la dinámica de explotación, éste refleja algunos de los más importantes aspectos de la dinámica poblacional (Horbowy 1996, Yoshimoto and Clarke 1993).

En este proyecto los siguientes puntos biológicos de referencia (PBR) fueron utilizados para determinar un acercamiento al estatus de la población: F0.1, la

mortalidad por pesca correspondiente al punto donde la pendiente de la curva de rendimiento por recluta (Y/R) igual al 10% de la pendiente en el origen; Fmax, la mortalidad por pesca que produce el máximo rendimiento por recluta; y F40%, la mortalidad por pesca que produce una reducción del 40% del potencial reproductivo (PR). El potencial reproductivo fue definido como la razón entre el valor de la biomasa desovante por recluta (BD/R) para un determinado nivel de pesca y la BD/R sin pesca.

Por otro lado, las tasas de mortalidad por pesca que fueron contrastadas con los niveles de mortalidad de referencia biológica, se obtuvieron para cada sexo empleando el método de Jones y van Zalinge (1982), utilizando en forma separada la estructura de tallas de las capturas globales obtenidas en dos zonas del área de estudio. Jones y van Zalinge propusieron una curva de captura acumulativa basada en la composición por tallas cuando los tiempos son variables, como es frecuente en la población de jaiba marmola.

Las actuales condiciones de explotación del stock de jaiba marmola es abordada a través de comparar los PBR y la mortalidad por pesca actual (Fact), esta última obtenida por el método de Jones y van Zalinge (1982). Esta mortalidad por pesca es calculada para cada sexo, considerando en forma agregada la composición de tamaños (expresadas a través del ancho cefalotoráxico, AC) de las capturas globales durante el período de estudio. Sin embargo, las diferencias poblacionales entre la X y XI Regiones, evidenciadas en las composiciones de tamaños, las distancias entre las zonas de pesca, barreras físicas entre ambas zonas y diferencias en los rendimiento de pesca, indicó que el análisis de rendimiento y biomasa por recluta debería ser conducido por región incluyendo las principales procedencias de las capturas.

Las dos zonas de aplicación del modelo, corresponden a las principales procedencias de pesca ubicadas en la X Región (Norte de la Isla de Chiloé) y XI

Región (Canal Moraleda). Las procedencias de pesca utilizadas para las estimaciones fueron seleccionadas en base a la importancia en los desembarques, su constancia en el tiempo, la frecuencia y magnitud del muestreo, y el hecho que vienen siendo explotadas desde 1993 a la fecha. A esto se sumó las notorias diferencias poblacionales entre la X y XI Regiones, evidenciadas también en las composiciones de tamaños y rendimientos de pesca

Los parámetros de entrada al modelo provinieron de cuatro procesos poblacionales: i) crecimiento, ii) madurez, iii) mortalidad natural, y iv) reclutamiento a la pesquería, este último expresado a través de la ojiva de selectividad. Los primeros tres procesos han sido documentado previamente por Pool et al., (1996) y Contreras (2000) y fueron tomados desde la literatura. No obstante, no existen claras evidencias sobre los patrones estaciónales y espaciales del reclutamiento a la pesquería, el desconocimiento de ellos nos sugirió que las ojivas de selectividad basadas en tallas fueran estimadas para el período de estudio y principales procedencias de las capturas por región desde las composiciones de tamaños acumuladas y diferenciadas por sexo. Desde estas ojivas fue posible determinar el ancho cefalotoráxico donde el 50% de los individuos se encuentran reclutados a la pesquería (S50%).

Las restricciones en los datos biológicos, como es la ausencia de ejemplares de tallas bajas y presencia de hembras ovíferas, dificultó la estimación de parámetros de crecimiento y madurez a una escala regional. Es por esto, que para el análisis por región y sus principales procedencias de capturas, los parámetros estimados por Pool et al., (1996) y Contreras (2000) fueron asumidos como valores de entrada en el modelo (**Tabla 1**).

Complementariamente a la metodología señalada en los párrafos anteriores, se realizó un análisis de la relación talla - alto quela y talla - ancho abdomen, para jaiba

marmola. Estos estudios específicos permiten identificar para machos y hembras, respectivamente a que talla (ancho cefalotoráxico) los individuos están morfológicamente maduros. Para estos efectos junto a los muestreos de talla se midieron estas dos variables adicionales según sexo. Para realizar el análisis se empleo la siguiente metodología.

Se analizó la base de datos disponibles, seleccionándose las muestras de talla de jaiba marmola por representar la principal especie presente en el desembarque.

Los datos fueron ordenados por puerto, talla y sexo. Para los machos se seleccionaron "puntos de corte" de talla, cada 10 mm, entre los 90 y 170 mm y para cada "punto de corte" se estimaron dos regresiones, una para los datos ubicados por debajo del punto de corte y otra para los datos ubicados sobre el punto de corte. Luego se sumaron las sumas de cuadrados residuales (SCR) de ambas regresiones y se calculó la suma de cuadrados medios residuales conjunta (Zar, 1999).

$$(s_{Y \cdot x}^2)_c = \frac{SCR_1 + SCR_2}{GLR_1 + GLR_2}$$

donde GLR_1 y GLR_2 corresponden a los grados de libertad de los residuales para la regresión 1 y 2, respectivamente.

Las sumas de cuadrados medios residuales conjuntas fueron graficadas versus el punto de corte, con el propósito de establecer el punto de quiebre en el crecimiento de las jaibas, que está dado por el valor mínimo de $(s_{Y,x}^2)_c$.

Para hembras se procedió inicialmente con una metodología similar, sin embargo la varianza estimada sugirió hacer una regresión con todos los datos y posteriormente hacer un histograma con los residuales.

Por otra parte, la socialización del proyecto permitió conocer la percepción que tienen los diversos grupos involucrados en la explotación y manejo de la pesquería, sobre el estado del recurso. Para ello se sostuvieron reuniones en diferentes instancias con los agentes de ambas regiones, se recogieron sus inquietudes y apreciaciones, respecto al proyecto y al manejo del recurso. El desarrollo de estas acciones se realizó mediante la utilización de entrevistas semiestructuradas, encuestas y presentaciones.

A las reuniones asistieron dueños de embarcaciones, tripulantes, buzos, compradores, intermediarios, representantes de las empresas y autoridades locales relacionadas con la fiscalización (SERNAPESCA).

La información recopilada fue categorizadas de acuerdo a diferentes temas previamente establecidos: i) regulatorios, relativo al acceso a la pesquería; ii) pesqueros, referidos a la cantidad y calidad de las capturas; iii) del recurso, referidos a problemas con el estado del recurso y su conocimiento y iv) económicos, relativo a precios, comercialización y mercado del recurso.

Complementariamente los temas antes señalados fueron discutidos en Talleres realizados en cada región, que contaron con apoyo visual, donde además, se entregaron los resultados preliminares obtenidos en este estudio a la fecha de cada presentación. A su vez, estas actividades permitieron complementar y validar la información recopilada.

4. **RESULTADOS**

4.1 Resultados asociados al objetivo específico 3.2.1

"Caracterizar la actividad extractiva del recurso jaiba en la X y XI Regiones"

4.1.1 Estimación del número de participantes en la pesquería del recurso jaiba por región, total y su variación en el tiempo

De acuerdo a la información proporcionada por el Sernapesca en las regiones en estudio existen 8.097 pescadores autorizados para extraer jaibas, 6.279 de la X Región y 1.818 de la XI Región, distribuidos en 107 y 14 caletas respectivamente.

Los resultados obtenidos en este proyecto dan cuenta de 835 pescadores trabajando efectivamente sobre el recurso, 573 en la X Región y 262 en la XI Región. Estas cifras representan el 9% y 14,4% del total de pescadores (buzos, ayudantes de buzos y tripulantes) inscritos para explotar jaibas en las respectivas regiones.

Entre los años 2001 a 2004, la información del Sernapesca señala para la X Región, que en 37 caletas se desembarcó jaibas, cifra superior a lo observado en terreno, donde se constató que en 20 de ellas esto no ocurre. De hecho, en los puertos que registran el mayor número de pescadores inscritos para extraer el recurso a nivel regional: Quellón (1.242 pescadores), Bahía Mansa (313), Dalcahue (252) y Maullín (320), la explotación la realiza un número mucho menor: 65, 16, 12 y 0 pescadores, respectivamente (**Tabla 2**).

Ancud es el puerto que registró el mayor número de pescadores activos, (288, distribuidos en patrones, tripulantes, buzos y ayudante de buzo), cifra que representó el 45,7% del universo que durante el estudio capturó jaibas en la región. De ellos 84

personas operaron en las embarcaciones tramperas. Le sigue en importancia Quellón, con 26 pescadores que explotan estos recursos mediante buceo y 39 que operan en la flota trampera. Esta cifra representa el 6% del universo de pescadores artesanales autorizados para extraer jaibas en este puerto. En Carelmapu participaron 43 personas de las 284 inscritas en el registro pesquero artesanal de Sernapesca, lo que significa que sólo el 15% de los pescadores inscritos capturaron jaibas. Finalmente en Dalcahue operaron 12 personas a bordo sólo de embarcaciones tramperas.

En la XI Región, debido a que los pescadores operan en faenas no desembarcan su captura en los puertos que registran como base en el Sernapesca. En **Tabla 3** se registra el número de extractores que laboran en algunas de las faenas de pesca monitoreadas en este estudio. Todos los ejemplares que son extraídos en la región son transportados por lanchas recolectoras desde las zonas de pesca a Puerto Chacabuco y Puerto Aysen (Muelle de Aguas Muertas), donde son entregadas a la Empresa Pesca Chile.

La fluctuación en el tiempo del número de pescadores activos está directamente relacionada con la fluctuación del número de embarcaciones en operación (ver punto 4.1.2).

 Estimación del número de buzos por región, total y su variación en el periodo de estudio

El número de buzos que operó durante el periodo de estudio, en los puertos monitoreados en la X Región fue igual a 167 personas, de las cuales 138 operaron en Ancud, 16 en Carelmapu y 13 en Quellón.

En Ancud la extracción de jaibas fue constante durante todo el periodo de estudio, registrándose un menor número de buzos en plena época estival, diciembre a febrero, periodo en el cual se registraron entre 9 a 13 buzos, situación que cambia a partir de marzo. En noviembre el número de buzos fue igual a 33 personas, alcanzándose el mayor valor en julio del 2005, 24 personas. La actividad extractiva sobre el recurso por parte de los buzos, en Carelmapu y Quellón se restringió a noviembre del 2004 en el caso del primer puerto, en tanto que en el segundo se realizó en los meses de noviembre del 2004 y julio - agosto del 2005 (**Tabla 4**).

En Dalcahue (X Región) y en los lugares de faenas de la XI Región no se detectó buzos operando en la extracción de jaibas.

4.1.2 Estimación del número de embarcaciones por región, total y su variación en el periodo de estudio.

La información proporcionada por el Sernapesca señala que en las regiones en estudio existen 2.942 embarcaciones autorizadas para extraer jaibas, 2.155 en la X Región y 787 en la XI Región, y cuya distribución es igual a la establecida para el caso de pescadores (punto 4.1.1).

En este estudio se estimó que la flota extractora de jaibas está compuesta por 266 embarcaciones, 198 en la X Región y 68 en la XI Región, cifras que representan el 9,1% y 8,6%, respectivamente, del total de embarcaciones (extractoras y de transporte) inscritas para explotar estos recursos.

La flota de la X Región operó en 17 puertos y al igual que en el caso de los buzos, los puertos de Quellón, Dalcahue, Ancud, Carelmapu y Maullín fueron los que presentaron la mayor flota inscrita en el Sernapesca para extraer estos recursos con 371, 97, 88, 71 y 72 embarcaciones, respectivamente. Sin embargo, durante el

periodo de estudio, sólo trabajaron 25, 3, 89, 15 y 0 embarcaciones, respectivamente. (**Tabla 5**).

En la XI Región, las embarcaciones distribuidas en diversas localidades, entregan su producción a lanchas recolectoras, por ello no desembarcan en su puerto base. En la **Tabla 6** se registra el número de embarcaciones que trabajaron en las faenas de pesca monitoreadas en este estudio.

La flota de Ancud, operó en 305 días de los 365 que duró el monitoreo de la pesquería. El 55% (47) de las embarcaciones realizaron entre 1 a 10 viajes para capturar jaibas, mientras que el 26% (23), registró entre 11 a 50 viajes. El porcentaje restante se dividió en un 10% que realizó entre 51 y 100 viajes y el 9% restante entre 101 y 175 viajes. Sólo 7 embarcaciones (buceadoras) y 10 (tramperas) explotaron en forma constante el recurso, cifra equivalente al 19% del total de embarcaciones registradas. La flota asociada al buceo presenta una baja actividad entre diciembre (2004) y febrero (2005), periodo en el cual se registraron 7 y 8 embarcaciones.

En términos del número de viajes, Quellón es el puerto que sigue en importancia donde el 92% (25) de la flota, realizó entre 1 a 3 viajes, mientras que sólo 2 embarcaciones realizaron entre 5 y 7 viajes. La actividad extractiva se realizó en 34 días distribuidos entre noviembre y diciembre de 2004, febrero a abril y junio a agosto de 2005.

En Carelmapu la flota compuesta por 15 embarcaciones, 10 de buceo y 5 de trampas, operó en noviembre del 2004 (buceo), enero, abril y octubre del 2005 (trampas), por un periodo igual a 20 días. Del total de embarcaciones, 2 de ellas efectuaron un máximo de 6 viajes cada una para capturar el recurso; otras 10 realizaron entre 1 y 3 viajes para obtener jaibas y las 3 restantes registraron 4 viajes en todo el periodo (**Tabla 7**).

Finalmente en Dalcahue la flota compuesta sólo por embarcaciones tramperas (3), operó 217 días, registrando en este periodo 122 viajes. Dos embarcaciones registran en conjunto 96 viajes (79% de los viajes totales), mientras que la tercera embarcación presenta 26 viajes en el periodo de estudio, debido a que cesó las faenas de extracción de jaibas en mayo del 2005.

Las caletas de Piñihuil y Nal destacan dentro de las caletas no monitoreadas en forma permanente, ya que se comprobó que su flota extrae en forma constante el recurso. En el caso de Piñihuil, la flota está conformada por 18 embarcaciones de la caleta más 4 provenientes de Pumillahue, todas explotando las mismas áreas de pesca y desembarcando en Piñihuil. En Nal por su parte operan 7 embarcaciones. En términos de tamaño, la flota de estas caletas registra el tercer lugar en importancia luego de Ancud y Quellón.

4.1.3 Características de las embarcaciones, según arte o sistema de pesca.

Del total de embarcaciones monitoreadas, se logró registrar las características geométricas y funcionales a 124 de ellas, lo que representa el 46% de la flota estimada para ambas regiones.

En la X Región, mayoritariamente las embarcaciones que extraen jaibas son de madera, propulsadas por motores internos, con casilla ubicada en proa y en algunos casos con la bodega cubierta y con estructura a popa sobre ella (**Foto 1A**, **1B**). La excepción la presentó caleta Piñihuil donde se observó 4 embarcaciones de fibra de vidrio, sin casilla y propulsadas por motores fuera de borda (**Foto 1C**). El rango de eslora de la flota fluctúa entre 6 m y 13,34 m. El 55% (44) de la flota que opera mediante buceo y que fue encuestada, se concentra en el rango 7 m a 9 m

de eslora, mientras que el 65% (32) de la flota que utiliza trampas, posee entre 10,1 m y 13,5 m (**Tabla 8**).

La potencia de los motores fluctúa entre 10 Hp y 180 Hp, concentrándose el 89,5% de éstos entre los 10 Hp y 100 Hp. La flota con sistema de buceo agrupa la mayor cantidad de embarcaciones (55%) con potencias de motor entre 15 Hp y 40 Hp, mientras que las tramperas lo hacen entre los 65 Hp y 180 Hp, de los cuales el 65,5% se concentra entre los 65 Hp y 100 Hp (**Tabla 9**).

En la XI Región las embarcaciones que operan extrayendo el recurso o realizando labores de cabotaje (transporte) se distribuye entre los 4 m y 13,5 m de eslora. El 85,7% (24) de estas se concentra entre los 4 y 9 m de eslora, mientras que un 14,3% (4) posee un tamaño entre 10,1 y 13,5 m. A diferencia de la flota de la X Región las embarcaciones tramperas en su mayoría funcionan con motores fuera de borda, bodega abierta y algunas poseen casilla (**Tabla 8 - Foto 2**).

En esta región, el rango de la potencia de motor de las embarcaciones que extraen este recurso, se extiende entre los 10 Hp a 180 Hp, concentrándose la mayor parte de estas (19) entre los 10 Hp y los 20 Hp (67,8%). Las embarcaciones de cabotaje (2) registraron motores con una potencia superior a los 160 Hp. (**Tabla 9**).

En ambas regiones la flota utiliza motores de una variedad de marcas. Siete de ellas corresponden a motores fuera de borda y 17 a motores internos. Una embarcación (XI Región) señaló utilizar un motor adaptado (**Tabla 10**).

Sólo 22 embarcaciones presentaron equipos de navegación, comunicación y/o detección, lo que equivale al 17,7% del total de embarcaciones encuestadas, en ambas regiones. De ellas un 40,9% posee ecosonda, igual porcentaje posee radio UHF (principalmente las de la XI Región), mientras que en la X Región el teléfono

celular es el sistema de comunicación mayormente utilizado. Finalmente un 18% usa radio HF.

4.1.4 Características de los sistemas de pesca.

Sistema de buceo semi autónomo.

Este sistema no difiere de los usados para extraer otros recursos bentónicos y consiste en un compresor, un motor que lo impulsa y mangueras, cuyo número varía entre 1 a 4 dependiendo de la capacidad del compresor y del acumulador (**Foto 1**). El mayor número de compresores presenta entre 100 y 150 psi (libras/plg²), dentro de un rango que fluctúa entre los 70 y 300 psi (libras/plg²). Los antecedentes recopilados indican que el rango del volumen del acumulador se presenta entre los 30 y 250 litros, concentrándose la mayor fracción en el rango 51 a 130 litros (**Tabla 11**).

La flota que opera con buceo posee una tripulación que varia entre 2 a 4 personas, dependiendo del tamaño de la embarcación. Normalmente, independiente del número de buzos presentes, viaja un tripulante que cumple las labores de auxiliar de cubierta ("tele").

Sistema de extracción mediante trampas

Las trampas (**Foto 3**) son estructuras de acero, de forma semicónica, cuyo diámetro en su base fluctúa entre 90 y 120 cm y en la boca entre 30 a 40 cm. Alrededor de la boca se ubica una goma (cámara de neumático, X Región) o plástico (XI Región), para evitar el escape de la captura. El alto de las trampas varía entre 35 y 50 cm. La malla utilizada posee una abertura de 2 pulgadas.

En las embarcaciones de mayores dimensiones, las trampas son viradas mediante una pluma, mientras que en embarcaciones más pequeñas esta operación se realiza en forma manual (**Foto 4 y 5**). Este sistema de extracción usa carnada, la que puede variar dependiendo de la región. En la X Región se usa: salmón, jurel, pejerrey y en menor grado choritos. En la XI Región se emplea: chorito, picoroco, almejas, róbalos, salmón y pejerrey.

El tamaño de la tripulación que opera con trampas depende del tipo de embarcación. En la flota cuya eslora varia entre 6 a 8 m, la tripulación se conforma entre 1 a 3 personas, en el caso de embarcaciones más grandes la tripulación consta de 3 a 5 personas. Entre las tareas que la tripulación debe realizar a bordo se cuentan calar y virar las líneas, extracción y selección de la captura, limpiar y ordenar las trampas.

Se adjunta a este informe un documento audiovisual en formato **DVD** que describe la actividad pesquera ejercida sobre el recurso mediante este sistema, incluyendo la descripción de las trampas y procesos de calado, virado y muestreos (**Anexo 4**).

4.1.5 Régimen de operación de la flota

El régimen de operación de la flota extractora es de tres tipos: i) flota cuya jornada de pesca se realiza durante el día, ya sea mediante buceo o trampas; ii) flota cuya jornada de trabajo implica más de un día; y iii) Embarcaciones transportadoras del recurso desde las zonas de pesca hasta los puertos de desembarque.

• Embarcaciones cuya jornada de pesca ocurre durante el día.

Las embarcaciones que extraen el recurso mediante sistema de buceo zarpan a las zonas de pesca en la mañana (a partir de las 7:00 hrs.), las que se encuentran distantes en tiempos de navegación desde su puerto de origen entre 20 a 60

minutos. El tiempo de buceo empleado en la actividad de extracción varía en promedio de 1 a 3 horas. Si bien la hora de regreso es azarosa, la regla general es que comiencen a arribar a puerto a partir de las 13:00 hrs. Este esquema operacional se observó en cada uno de los puertos en que se utiliza este sistema de captura.

En el caso de la flota que usa trampas existe sólo una modalidad de trabajo que ocurre en el día. La flota zarpa en la mañana con 2 trampas las cuales calan en la zona de pesca sin utilizar carnada, levantando la trampa cada cierto tiempo (entre 20 a 30 min.) para retirar lo capturado. Esta maniobra la realizan tantas veces como sea necesario para reunir la cantidad estimada por ellos como una buena captura. Este método es usado en Maicolpué (X Región), donde operan embarcaciones de Bahía Mansa.

• Embarcaciones cuya jornada de trabajo es mayor a un día

Las embarcaciones que extraen el recurso mediante sistema de trampas poseen diferentes modos de operación, implicando más de una jornada de trabajo

La actividad se inicia después del mediodía con el proceso de encarnado, que incluye el arribo de la carnada en camiones⁵, su almacenamiento, preparación de la carnada para ser dispuesta en cada bolsa o "quiñe" y revisión de las trampas (**Foto 6**). Luego se inician los zarpes a partir de las 15:00 hrs. en promedio. En la zona de pesca se calan las trampas, cuyo número fluctúa entre 40 y 135 unidades (**Foto 7**), se disponen en el fondo del mar en líneas, varían entre 1 y 3, colocadas una a continuación de la otra. En Ancud, al interior de la línea las trampas, van separadas entre 25 a 30 m, mientras que en Dalcahue distan 3 m. Luego de realizada esta

47

⁵ El almacenamiento de carnada, que si bien no es refrigerado, permite que otras jornadas de pesca comiencen con la puesta de la carnada en los quiñes y no con la llegada del camión.

operación, la flota regresa al puerto zarpando al día siguiente, desde las 6:00 hrs. en adelante. En la zona de pesca, recogen y luego arriban al puerto alrededor de las 9:30 horas, lugar donde realizan la comercialización de las capturas. Este modo de operar es común en el puerto de Ancud, Curanue, Dalcahue, Carelmapu y Quellón.

Un segundo modo de operación se diferencia sólo en el número de trampas que son caladas. Estas varían entre 15 y 20, son caladas en forma individual entre las 17:00 hrs y 18:00 hrs y retiradas al día siguiente entre las 06:00 y 07:00 hrs. La flota opta por quedarse resguardando sus trampas dependiendo de las condiciones del lugar.

Una tercera modalidad consiste en que la embarcación permanece en el lugar, calando y recogiendo las trampas siguiendo el régimen que realizan normalmente en puerto, es decir, calando al atardecer y recogiendo en la mañana, labor que realizan tantas veces como días permanecen en el caladero.

En la XI Región la flota utiliza sólo trampas como sistema de pesca. La carnada es obtenida mediante la propia extracción de choritos y picorocos, obtenidos de bancos naturales, los que apozan para tener abastecimiento por varios días o bien calan redes para obtener peces (**Foto 8**). El proceso de pesca continúa con la preparación de los "quiñes", consistente en su llenado con choritos y un trozo de pescado (**Foto 9**). A su vez, en el fondo de la trampa se vuelven a colocar choritos y picorocos.

Las trampas se calan en forma individual y permanecen en reposo entre 14 a 17 horas. Trascurrido este período, se levanta cada trampa, se seleccionan los individuos con ancho cefalotorácico sobre 12 cm y que tengan ambas pinzas, descartándose los otros ejemplares. Inmediatamente se coloca nueva carnada y se calan las trampas hasta el día siguiente. La captura del día se dispone en balsas de apozamiento a la espera de la lancha de cabotaje (**Foto 10**).

La extracción de jaibas en la XI Región se organiza en base a faenas, la cual esta conformada por un alto número de embarcaciones⁶, cuya tripulación habita en diferentes islas ubicadas distantes de los puertos de desembarque, lo que imposibilita trabajar en jornadas diarias desde un puerto base. En las islas los pescadores instalan "casas" en su mayoría de material ligero, donde habitan mientras permanecen en las zonas de pesca. Las capturas diarias de jaiba, son "guardadas" en balsas artesanales confeccionadas para estos efectos, hasta que la embarcación transportadora llega a buscar la captura.

A diferencia de las "faenas de erizo" donde la transportadora llega a un "puerto de faena" y a ese lugar llegan todas las embarcaciones a entregar su captura, la embarcación transportadora de jaibas va recorriendo las distintas islas recogiendo la captura, no existiendo el llamado puerto de faena. La otra diferencia con las faenas de erizo es que los pescadores no permanecen a bordo de las embarcaciones en forma continua, sino que viven en tierra (Foto 11). Esto explica el hecho que las embarcaciones jaiberos que operan en base a faenas en la XI Región no posean en su mayoría casilla. Esta forma de operar conlleva a la existencia de numerosas combinaciones de zonas de pesca, dependiendo de las islas que recorrió la embarcación transportadora en un viaje. El abastecimiento de víveres y combustible es aportado por la persona que instala la faena, el cual no necesariamente es dueño de la embarcación recolectora.

• Embarcaciones transportadoras

La flota transportadora está compuesta por embarcaciones artesanales, cuya bodega permite transportar a granel grandes volúmenes de jaibas (7.000 a 30.000 unidades). Esta flota viaja desde Dalcahue, Quellón o Puerto Chacabuco a los diferentes caladeros donde se han montado faenas del recurso, una vez completada

⁶ En terreno se constató 68 embarcaciones

la carga regresa al puerto base. Un viaje demora entre 3 a 4 días en la X Región y un máximo de 5 días en la XI Región (Puerto Chacabuco) (**Foto 12**).

Para el desembarque de jaibas, la industria provee de bandejas de plástico, las cuales son llenadas por un equipo de personas que realizan la descarga. Para esta actividad las jaibas son recogidas desde la bodega de la embarcación mediante palas planas y depositadas en las bandejas las cuales son transportadas en camión a la industria procesadora. Esta actividad es posible observarla en el documento audiovisual que se entrega adjunto a este informe (**Anexo 4**)

4.1.6 Identificación de las principales áreas o zonas de extracción y de los centros de desembarque.

Como se ha señalado en párrafos anteriores los principales centros de desembarque en la X Región son: Ancud, Quellón, Piñihuil, Nal, Dalcahue y Carelmapu; mientras que en la XI Región lo es Puerto Chacabuco.

Respecto a las zonas de extracción, se registró actividad de la flota en 104 procedencias, 53 ubicadas en la X Región y 51 en la XI Región (**Tablas 12, 13, Fig. 2**).

De los puertos monitoreados en la X Región, la flota de Ancud explotó el mayor número de áreas (22). En 15 de ellas extrajo jaiba mediante buceo y en 13 mediante trampas, observándose 6 áreas comunes a ambos sistemas de extracción. El área cubierta por la flota abarca desde los 41°34'48"LS a los 41°52'00"LS, esto significa que al menos una fracción de la flota se desplaza al norte más allá del Canal de Cacao, operando en el lado expuesto del Océano Pacífico. Por el sur la flota operó por el lado expuesto de la Isla de Chiloé. No se observó que la flota se desplazara a operar en el sector de aguas interiores.

Quellón es el puerto que sigue en importancia en términos de número de procedencias explotadas. La flota explotó 19 áreas, seis de ellas por la flota que extrae el recurso mediante buceo y 18 por la flota trampera. Las procedencias comunes a los dos artes de pesca fueron: Barra Chiguao, Isla Laitec, Canal Yelcho, Quellón Viejo y San Antonio. El área cubierta por la flota abarcó desde los 42°37'36"LS a los 45°47'00"LS. La flota operó en el sector de aguas interiores de la Isla de Chiloé por el norte y en tres áreas ubicadas en la XI Región, por el sur.

En Dalcahue, la flota que operó sólo con trampas visitó 14 procedencias, ubicadas entre los 42°27′22″LS y los 42°50′00″ LS todas ubicadas en el sector de aguas interiores de Chiloé. Finalmente en Carelmapu la flota explotó el menor número de áreas, sólo 3, siendo una de ellas común a los dos artes de pesca. Las zonas de extracción Punta Chocoi y Punta Lenqui fueron explotadas en forma conjunta por flota de Carelmapu y Ancud

En la XI Región las faenas de pesca se desarrollaron en 48 procedencias, ubicadas entre los 43°21'00" LS y los 46°10'00" LS (**Fig. 2**). Estas áreas surgen producto de los viajes que realizan las lanchas de cabotaje para recolectar las capturas de las distintas faenas dispuestas en la región.

En base a los atributos: niveles de captura, número de viajes y número de embarcaciones; se han identificado las procedencias más importantes por puerto las cuales se entregan en las **Tablas 14** y **15**.

En puertos de la X Región, entre 1 y 2 procedencias concentran sobre el 50% de los desembarques. La más importante asociada a Quellón se ubica en la XI Región. En Puerto Chacabuco, un número mucho mayor, 13 procedencias, concentran sobre el 50% de los desembarques. Cabe señalar que las llamadas "áreas" son producto de

que la pesca monitoreada en el puerto corresponde al recorrido de la embarcación extractora por varias zonas de pesca.

Al analizar la relevancia de las procedencias en base al atributo numero de viajes, su importancia en algunos casos se mantiene; procedencias asociadas a Carelmapu, Ancud y Dalcahue, mientras que en otros casos difiere notablemente: Quellón y Puerto Chacabuco.

Luego al analizar según el último atributo identificado, esta situación vuelve a diferir. Se observan muchas procedencias, especialmente en Puerto Chacabuco donde sólo se registró una embarcación en operación durante todo el período, siendo las procedencias más importantes Isla Costas e Isla Canquenes. Se debe tener presente que la agrupación de la información en base a áreas enmascara los viajes a cada zona de pesca, debido a que una zona de pesca puede estar contenida en varias áreas.

4.2 Resultados asociados al Objetivo Específico 2.2.2

"Estimar la captura, esfuerzo y rendimientos de pesca, por especie, para las principales zonas o áreas de extracción, y su variación temporal".

4.2.1 Desembarques

Capturas extraídas mediante Buceo

Durante el periodo de estudio se desembarcaron en los centros de monitoreo de la X Región 110,8 t del recurso jaiba equivalentes a 358.951 individuos. El puerto de Ancud, que presenta una constancia en la extracción del recurso a través de todo el período de estudio, registró los mayores niveles de desembarque, con 102,5 t, cifra equivalentes al 92% de la captura regional monitoreada. Carelmapu fue el puerto que

le siguió en importancia en el desembarque de jaibas buceadas con 4,8 t, mientras Quellón sólo registró 3,4 t. (**Tabla 16**).

A nivel de especies, se establece que en conjunto los tres centros monitoreados extrajeron una mayor magnitud de pesca de jaiba peluda, equivalente al 58% de los desembarques identificados por especie, le siguió en importancia jaiba marmola con un 36%, jaiba mora con un 5%, y jaiba reina con una representación menor a un 0,1%.

El análisis por puerto establece que en Ancud la extracción de jaiba peluda aportó con el 35% de los desembarques en peso y la jaiba marmola con el 19%. Secundariamente se desembarcó jaiba reina y jaiba mora (**Tabla 17**). Las capturas provinieron de 15 áreas de pesca, donde Mutrico e Isla Cochinos concentró el 75% de las capturas. Si bien, en términos temporales, durante el año 2005 los mayores volúmenes se observaron en los meses de agosto a octubre no se aprecia una mayor intensidad de pesca en una época o mes del año en particular (**Tabla 18**).

En Carelmapu los desembarques provinieron de dos áreas de pesca, Punta Chocoi y Canal Chacao, registrando el primero de ellos más del 90% de los desembarques (**Tabla 18**). A diferencia de Ancud, desde el año 1998 en adelante este puerto no registra una explotación constante de jaibas, y en los tres últimos años sólo se registrar desembarques en uno a cuatro meses en el año. Finalmente en Quellón, los desembarques provinieron de 6 procedencias, concentrando tres de ellas, Barra Chiguao, Isla Laitec y Canal Yelcho el 77% de los desembarques (**Tabla 18**).

La serie mensual de desembarques contenida en la base de datos de IFOP y que cubre el período comprendido entre 1998 y 2000 no muestra ninguna tendencia en los desembarques. En los años siguientes los desembarques extraídos mediante

buceo se tornan irregulares, y en los últimos tres años registran capturas sólo en dos a cinco meses en el año.

Capturas extraídas mediante trampas

El desembarque extraído mediante trampas prácticamente es 6 veces superior al registrado mediante buceo durante el periodo de estudio, 2.244 t (4,2 millones de unidades). En la X Región, el puerto que registró los mayores niveles de desembarque del recurso jaiba fue Ancud, con 660 t (2,8 millones de unidades) cifra equivalente al 60% de la captura regional monitoreada. Dalcahue fue el puerto que le siguió en importancia con 368 t, mientras que Quellón y Carelmapu registraron 62 y 17 t. respectivamente (**Tabla 19**).

El análisis a nivel de especies (**Tabla 20**), establece que jaiba marmola es la que registra los mayores desembarques en los cuatro centros de muestreo de la X Región; Carelmapu (12.6 t), Ancud (480 t), Dalcahue (317 t) y Quellón (49.3 t), lo que en total implica el 77% (859 t). En segundo lugar se ubica la jaiba reina con 74,3 t, le sigue jaiba peluda con 40 t y jaiba mora con 5,8 t.

En Ancud, las zonas de pesca relevantes fueron Ahui (11%), Bahía Ancud (43%) e Isla Cochino (17%), que en conjunto aportaron el 71% al desembarque de este puerto y el 64% del total extraído en los cuatro centros de muestreo. La especie de mayor importancia fue jaiba marmola con capturas que alcanzan las 480 t , seguido de jaiba reina con 51 t, jaiba peluda con 35 t y jaiba mora 5,8 t (**Tabla 21**).

En Dalcahue la pesquería estuvo compuesta de jaiba marmola, jaiba reina y una menor proporción de jaiba peluda, alcanzando en conjunto 367 t (1,2 millones de unidades), compuestas por 317 t de jaiba marmola, 22,5 t de jaiba reina y 187 kg de jaiba peluda. Las principales áreas de pesca fueron Curaco de Vélez, Rilan y Calen,

que aportaron con 512 t, 546 t, 219 t, respectivamente, al desembarque total de jaibas registrado en peso por este puerto, lo que en conjunto suma el 96% de los desembarques de este puerto (**Tabla 21**).

En Quellón, Isla Traiguén se presentó como la zona más importante, registrando un 58% de las capturas totales registradas en el puerto, compuesto en su mayor parte por jaiba marmola, especie que registra un desembarque de 35,8 t (**Tabla 21**).

En Carelmapu se desembarcó un total de 17,5 t (73.385 individuos), extraídos principalmente de Punta Chocoi (88%), siendo la jaiba marmola la especie con mayores capturas, alcanzando el 72% del total desembarcado en peso (**Tabla 21**).

En Puerto Chacabuco, XI Región, se desembarcó sólo jaiba marmola, 1.136 t, siendo los sectores de Islas Costa (139,2 t - 310 mil u.); Grupo Mogotes (71,8 t - 161 mil u); Isla Castillo (71,5 t - 175 mil u) y Pilcomayo (68,4 t - 163 mil u); los que registraron las mayores capturas (**Tabla 21**)

4.2.2 Esfuerzo de pesca

Actividad de buceo

La flota artesanal empleó un total de 3.073,4 horas de buceo, concentrando la mayor parte de este tiempo en el puerto de Ancud (2.897,1 horas), seguido de Quellón (93,5 hrs.) y Carelmapu (82,8 hrs.) (**Tabla 22**).

Trampas

En los centros de muestreo de la X Región, el esfuerzo aplicado mediante trampas totalizó 2.103.903 horas totales de reposo empleadas, el que estuvo concentrado

principalmente en Ancud (1.722.143 horas) con un 82% del esfuerzo total aplicado en los puertos de esta región (**Tabla 23**). En este puerto las zonas principales fueron Bahía Ancud (925.582 hrs.), Isla Cochinos (283.313 hrs.) y Ahui (185.250 hrs.).

En Carelmapu el mayor esfuerzo se monitoreó en Punta Chocoi (13.728 hrs.); mientras que en Dalcahue los sectores de Rilan (126.487 hrs.) y Curaco de Vélez (84.160 hrs.), fueron los más importantes. En Quellón los antecedentes disponibles indicaron que el mayor esfuerzo se aplicó en el sector de Yencouma (16.280 hrs.).

Debido al régimen operacional particular observado en Puerto Chacabuco (XI Región), donde arriban sólo lanchas acarreadoras, no fue posible estimar el esfuerzo.

4.2.3 Rendimiento de pesca

En el puerto de Ancud el rendimiento fluctuó entre 10,8 y 123 kg/h-buceo, aquí el valor más alto se monitoreó en el sector de Isla Sebastiana (abril) y el valor más bajo en Punta Yuste (mayo – **Tabla 24**). Las principales procedencias, Mutrico, Isla Cochino y Bahía Ancud, registraron rendimientos entre 17 y 48 kg/h-buceo, donde el valor más alto se presentó en Mutrico (febrero) y el más bajo en Bahía Ancud (marzo). Para los dos primeros sectores los rendimientos en general fueron superiores a los 28 kg/h-buceo a diferencia de Bahía Ancud donde estos fluctuaron entre los 17 y 29 kg/h-buceo.

Para este mismo puerto el rendimiento de la flota trampera fluctuó entre 0,03 y 1,483 (kg/h-reposo), ambos valores registrados en octubre del 2005. La procedencia que registró los mayores rendimientos con uso de trampas fue Amortajado y los valores más bajos isla Cochinos, esta última, sin embargo, es la que contribuyó con los mayores niveles de desembarque al puerto, lo que se explica por el alto número de viajes y embarcaciones que explotaron esta procedencia. Un factor que

probablemente incide en que los pescadores instalen sus trampas en Isla Cochinos es la distancia entre la caleta y la procedencia, lo cual se traduce en un menor gasto operacional comparado con Amortajado (**Tabla 25**).

En Dalcahue los rendimientos oscilaron entre 0,425 y 1,924 kg/h-reposo, registrándose el valor mínimo en Huyar y el más alto en Curaco de Velez. En las principales procedencias, Rilán y Curaco de Velez los rendimientos fluctuaron entre 0,556 y 1,924 kg/h-reposo, a diferencias de las principales procedencias explotadas por la flota de Ancud donde estos valores fueron menores (para ubicación de procedencias ver sección 4.1.5).

En el **Anexo 5** se entrega CD con base de datos referida a los meses de muestreo del proyecto.

4.3 Resultados asociados al Objetivo Específico 2.2.3

"Determinar la composición de tallas según sexo y la proporción sexual, por especie, en los desembarques, según el área o zona de procedencia de las capturas y el arte o sistema de pesca utilizado".

4.3.1 Estructura de talla de los desembarques

Por puerto

La jaiba marmola capturada con trampas y desembarcada en Carelmapu, presentó un rango de talla (ancho cefalotoráxico) entre 95 mm y 167 mm. Las hembras presentaron un 85,5% de ejemplares bajo la talla mínima legal (BTML), mientras que este porcentaje en machos alcanzó el 56,5%. La moda en machos se ubicó en los 120 mm (**Tabla 26**), mientras que en hembras esta se ubicó en los 110 mm (**Fig. 3**).

El desembarque en Ancud, registró una amplitud de tallas entre 43 y 237 mm. Este rango se mantuvo para las jaibas capturas con trampas. Sin embargo, mientras este se redujo entre 75 y 166 mm para aquellas capturadas mediante buceo (**Fig. 3**). Los valores modales variaron según el sistema de pesca, para el caso de machos estos valores se ubicaron en el rango de 120 y 110 mm, mientras que para hembras estos valores fueron 110 y 100 mm, para buceo y trampas, respectivamente (**Tabla 26**). Los porcentajes BTML fueron del orden de 71% en machos y 93% en hembras. En función del método de extracción, las jaibas extraídas con buceo presentaron porcentajes BTML de 54,7% y 86,4% para machos y hembras, respectivamente, mientras que en los ejemplares extraídos con trampas estos rangos se elevan a 72,4% en machos y 93,5% en hembras (**Fig. 3**).

Como ya se ha señalado, en Dalcahue las capturas de jaiba marmola sólo fueron extraídas con trampas. En esta localidad los tamaños de los ejemplares variaron entre 78 y 198 mm, el rango para hembras estuvo entre los 78 y 178 mm y el de machos entre 89 y 198 mm. Los valores modales se observan entre los 120 mm en machos y 110 mm en hembras (**Tabla 26**). El porcentaje BTML registrado en machos y en hembras correspondieron a 45,6% y 82,9%, respectivamente.

En Quellón se monitoreó el desembarque de jaiba marmola extraída mediante buceo y trampas. La estructura de tallas del desembarque obtenido mediante buceo se distribuyó en el rango 80 y 222 mm, mientras que el de trampas varía entre 68 y 220 mm. A nivel de sexos y para jaibas capturadas mediante buceo, se observaron los rangos modales en 130 a 150 mm para machos y 120 mm para hembras. A diferencia de los ejemplares extraídos con trampas cuyas modas están en el rango 120 a 130 para machos y 110 para hembras (**Tabla 26**).

Los porcentajes BTML de machos, son del orden de 19.9% y 45,9% para ejemplares extraídos mediante buceo y trampas, respectivamente. Para las hembras estos porcentajes varían a 59, 1 y 78,6%, respectivamente (**Fig. 3**).

En Puerto Chacabuco, las jaibas son extraídas sólo mediante trampas. Aquí el rango de talla del desembarque se distribuyó entre los 84 y 189 mm, lo que correspondió con el rango de tallas de los machos. En el caso de hembras el rango de tallas estuvo entre 86 y 173 mm. La moda de los desembarques fue de 130 mm para ambos sexos (**Tabla 26**). Los porcentajes BTML fueron del orden de los 11,5% y 9,5% para machos y hembras, respectivamente (**Fig. 3**).

Estructura de tallas por zona

El área de estudio fue subdividida en siete zonas, empleando como criterio la proximidad de las procedencias. Las composiciones de tallas de los ejemplares de jaiba marmola por zona, período (bimensual) y diferenciado por sexo se muestran en la **figura 4**. Las distribuciones de talla a nivel de zona fueron muy similares entre los períodos, pero a nivel de sexos se aprecian diferencias. Las hembras presentaron un rango de tallas más estrechos que los machos en las siete zonas analizadas y distribuciones de talla más aguzadas, lo que se reflejó en un recorrido intercuartil que fluctuó entre 10 a 15 mm en hembras a diferencia de los machos, que fue más amplia y que varió de 17 a 26 mm.

Entre zonas se observaron diferencias en las estructuras de tamaño, en la zona 1 y 2 (Bahía de Ancud) es donde se registraron los ejemplares más pequeños en contraposición con la zona 6 y 7 (XI Región), donde se extrajeron los ejemplares de mayor tamaño (**Fig. 4**). Estas diferencias se vieron reflejadas en las tallas medias y también en la proporción de ejemplares bajo la talla mínima legal (**Tabla 27 y 28**).

Las tallas medias fueron estimadas con adecuados niveles de precisión a nivel de estratos de zona y períodos analizados (los coeficientes de variación fluctuaron entre 3,2 y 15,6%). Por su parte las tallas medias fluctuaron entre 96 y 136 mm y como se indicó anteriormente con valores más altos en la undécima región y valores más bajos en el área de Ancud; de igual manera los machos presentaron tallas medias superiores a las de las hembras (**Tabla 27**).

Las capturas en las zonas 1 a 5 (X Región) estuvieron constituidas por una fracción importante de ejemplares pequeños, como se puede apreciar en la proporción estimada de ejemplares bajo la talla mínima legal (120 mm) (**Tabla 28**). Esta situación fue más crítica en el caso de las hembras, cuyo porcentaje frecuentemente superó el 80% de la captura y estuvo muy próximo al 100% en el Golfo de Ancud. En cambio en la zona 6 y 7 (XI Región) el porcentaje BTML fue sustantivamente menor. La precisión de las estimaciones estuvo dentro de rangos aceptable cuando el porcentaje BTML fue alto, no así cuando esta proporción fue baja, es decir, pasa a constituir un atributo raro que para poderlo estimar con adecuados niveles de precisión, se requieren muestras muy altas.

En la **figura 5** y en las **tablas 29 a 31** se presentan las distribuciones de las estructuras de talla por zona y sexo para todo el período de estudio, siendo posible observar tres agrupaciones. Las zonas 1 y 2, que corresponden al Golfo de Ancud, presentan estructuras muy similares tanto para machos como para hembras, y corresponden a los ejemplares de menor tamaño. Luego se tuvo las zonas 3, 4 y 5 localizadas en el Canal Dalcahue, con estructuras muy similares y con ejemplares de tamaños intermedios y por último, estuvieron las zonas 6 y 7 localizadas en el Canal Moraleda (XI Región), que si bien las estructuras no son muy similares entre ellas, se alejaron bastante de las anteriores al estar constituidas por ejemplares más grandes.

Mediante la prueba de Kolmogorov Smirnov (Zar, 1999) para pares de muestras independientes se compararon las estructuras de tallas entre zonas a un nivel de

riesgo del 5%. En general se rechazó la hipótesis nula, que plantea que las capturas de las zonas comparadas tienen igual distribución de frecuencia de longitud. Se exceptúan para el total, las zonas 1-2 y 4-5 que no mostraron diferencias estadísticamente significativas en sus estructuras de tallas, de la misma forma para las hembras, en las zonas 3-4 y 4-5; en el resto de las comparaciones, los tamaños de muestra sin duda contribuyeron al rechazo de la igualdad de las distribuciones, exceptuando las comparaciones de las zonas 6 y 7 donde el D_{max} se alejó bastante del D_{crítico} (**Tabla 32**).

Por su parte el análisis de las estructuras de tallas de jaiba reina, peluda y mora para el Golfo de Ancud establece que los rangos de tallas fluctúan entre 70 mm y 199 mm (**Fig. 6**), y que las tallas medias se ubican en los 107 mm, 122 mm y 108 mm respectivamente, con porcentajes BTML que fluctúan entre 45,5% y 91,4% (**Tabla 33**). En tanto, las características de las distribuciones de jaiba reina establecidas por zona indican que la talla media entre las zonas 3, 4 y 5 fluctúan entre116 mm y 119 mm, mientras que en las zonas 1 y 2 estas no sobrepasan los 110 mm (**Tabla 34**).

En la jaiba reina se aprecia el mismo patrón observado para la jaiba marmola, en el sentido que en el área del Golfo de Ancud (Zonas 1 y 2) se extraen ejemplares de menor tamaño en comparación con el Canal Dalcahue (Zona 3, 4 y 5), como se puede aprecia en la **figura 7** donde las zonas se separan claramente en dos agrupaciones.

4.3.2 Proporción sexual en el desembarque

Actividad mediante buceo

En la **Tabla 35A** se registra la proporción sexual por puerto, recurso y mes, observándose que en Carelmapu la mayor proporción de jaiba marmola y jaiba peluda desembarcadas son machos. Jaiba mora registró sólo extracción de hembras en el mes de noviembre.

En Ancud la situación para jaiba marmola y peluda no difiere del puerto mencionado anteriormente, ya que se nota una clara predominancia de machos en el desembarque, mientras que jaiba mora registra meses en que la predominancia sexual puede ser de machos, como de hembras o bien el sexo es proporcional en el desembarque (1:1) como se presenta en el mes de abril.

Mediante trampas

En **Tabla 35B** se registra la proporción sexual por puerto, recurso y mes. En Carelmapu existe una predominancia de machos en los desembarques para jaiba marmola y mora, siendo la excepción jaiba peluda que registra una predominancia de hembras sobre machos, con excepción del mes de octubre donde en el desembarque predominan fuertemente los machos.

En Ancud, las hembras de jaiba marmola y jaiba peluda predominan en los desembarques entre enero y marzo, en el resto del período de estudio los machos registran una mayor presencia. En el caso de jaiba reina predominaron siempre los machos, principales componentes de los desembarques, llegando a presentar una relación de 11:1 (macho: hembra). Por su parte el predominio de las hembras de jaiba mora solo se observa en abril y agosto.

En Dalcahue, a través de todo el período de estudio se observó una predominancia de machos, tanto en jaiba marmola como reina.

En Quellón entre noviembre y febrero predominaron las hembras de jaiba marmola, situación que se revierte a partir de marzo, donde el mayor número de individuos desembarcados son machos. En tanto, los machos de jaiba peluda y jaiba reina predominan en los desembarques.

En Puerto Chacabuco predominaron los machos sobre las hembras a través de todo el período de estudio con excepción del mes de diciembre en que fueron desembarcadas un mayor número de hembras.

A nivel de zonas de pesca se aprecia que la proporción sexual de jaiba marmola varía al igual que entre periodos (**Tabla 36**). Las estimaciones en términos generales indican un mayor predominio de hembras en el período enero-abril y un predominio de machos el resto del año, siendo más acentuada la presencia de machos en julio-octubre, donde se estiman proporciones superiores al 80%.

4.3.3 Proporción de hembras ovígeras en el desembarque

En términos generales la presencia de hembras ovígeras en los desembarques ya sean estas obtenidas por medio de buceo o trampas es escasa, registrándose con mayor notoriedad para jaiba mora en el puerto de Carelmapu en los meses de noviembre (sistema de buceo) y abril (sistema de trampas), donde alcanza un 33% y 35% del desembarque respectivamente (**Tabla 37**). El muelle de Ancud registra un 3% de hembras ovígeras en el caso de jaiba marmola obtenidas mediante buceo y entre 0,09% y 0,34% para aquellas obtenidas mediante trampas. En jaiba peluda los rangos porcentuales de presencia de hembras con huevos fluctuaron entre 0,88% y 23%, mientras que en Dalcahue no se registró la presencia de hembras ovígeras en los desembarques. En Quellón solo jaiba marmola presentó un 0,35% de hembras con huevos en el mes de julio.

En la XI Región, los desembarques indican una baja proporción de hembras con huevos, con excepción de agosto donde ésta se eleva a un 19%, lo que es considerado alto para este puerto, en base a las medidas de selección que experimenta el recurso antes de llegar a puerto.

La escasa presencia de hembras ovígeras se debe a la selección que se realiza en la actividad extractiva. El buzo no las extrae, mientras que los que seleccionan los ejemplares a bordo de embarcaciones tramperas las descartan.

En la XI Región la selección se realiza primero a bordo de la embarcación trampera (bote) y luego a bordo de la embarcación transportadora.

En el período de estudio no se observaron hembras "rasuradas" (ejemplares sin la presencia de abdomen). La ausencia de esta parte corporal sugiere que se trata de una hembra con huevos, ya que los extractores retiran esta sección para evitar alguna sanción de la autoridad al arribar a su puerto de comercialización.

4.3.4 Peso medio y relación longitud - peso

En la **Tabla 38** se entregan los parámetros de las relaciones longitud peso estudiadas. En ella se puede observar que las ecuaciones para los machos en su mayoría presentan isometría o alometría positiva mientras que las hembras presentan alometría negativa.

El análisis estadístico realizado para determinar si existen diferencias entre los parámetros ajustados para machos y hembras, demostró que existen diferencias (p<0,01), tanto en el parámetro de potencia, como en el intercepto del modelo ajustado, para jaiba marmola extraída en Isla Cochino, Punta Corona, Bahía de Ancud, Rilán, Huyar, Curaco de Vélez, Curanue, Isla Traiguén, Islas Costas, Corriente La Vaca y Pilcomayo; y para la jaiba peluda desembarcada en Ancud.

Al evaluar, en un modelo de análisis de covarianza, la estimación de los parámetros de la relación longitud-peso de la especie jaiba marmola desembarcada en Ancud y en Quellón, según procedencia y sexo, se confirman los resultados presentados, con

diferencias significativas entre sexos, tanto en el parámetro de intercepto, como en el de potencia, sin encontrarse diferencias significativas (p>0,7) entre las tres principales procedencias estudiadas en Ancud y las dos estudiadas en Quellón.

Para jaiba marmola extraída en Isla Chelín, la utilización del modelo de análisis de covarianza para verificar si existen diferencias entre los parámetros estimados para machos y hembras, mostró que no existen diferencias estadísticamente significativas, tanto para el intercepto (p= 0,35) como para el parámetro de potencia del modelo (p= 0,42), mientras que jaiba marmola extraída en Calén, la comparación estadística de los parámetros estimados para machos y hembras revela que las diferencias son significativas, con un nivel de significancia del 5% (p<0,05).

Al igual que los resultados obtenidos para el puerto de Ancud, al evaluar, en un modelo de análisis de covarianza, la estimación de los parámetros de la relación longitud-peso de la especie jaiba marmola desembarcada en Dalcahue, según procedencia y sexo, se confirman los resultados presentados, con diferencias significativas entre sexos, tanto en el parámetro de intercepto, como en el de potencia, sin encontrarse diferencias significativas (p>0,4) entre las procedencias estudiadas.

A su vez, al evaluar la estimación de los parámetros de la relación longitud-peso de jaiba marmola desembarcada en Puerto Chacabuco, según zona de procedencia y sexo, se confirman los resultados presentados, con diferencias significativas entre sexos, tanto en el parámetro de intercepto, como en el de potencia, sin encontrarse diferencias significativas (p>0,8) entre las procedencias estudiadas.

Para el caso de jaiba reina desembarcada en Ancud y para jaiba reina desembarcada en Dalcahue, solo se contó con información suficiente para ajustar el modelo de la relación talla-peso para machos.

En el **Anexo 6** se entregan los gráficos de las relaciones longitud-peso estudiadas, junto a los resultados obtenidos en los distintos análisis de covarianza realizados.

4.4 Objetivo específico 2.2.4.

"Determinar la fauna acompañante del recurso jaiba en los desembarques, según zona de procedencia de las capturas".

4.4.1 Composición de las capturas

Para efectos de estos resultados, se consideró como recurso objetivo a las especies de jaibas en su conjunto, por tanto, de acuerdo a la metodología propuesta, la captura total, la conforma la captura del recurso objetivo + captura de fauna acompañante (captura de especies no comerciales + descarte).

A partir del muestreo realizado a bordo de las embarcaciones extractoras tramperas, se registró captura de jaiba marmola, jaiba mora, jaiba peluda, jaiba reina y jaiba patuda (*Taliepus marginatus*). La especie dominante en todas las zonas fue la jaiba marmola, con valores de importancia relativa (en número) que variaron entre 79% y un 100% para las zonas de pesca de Ancud y Puerto Chacabuco, respectivamente. Aunque proporcionalmente fue de menor relevancia en las capturas la jaiba reina, tanto en las zonas de pesca de Ancud como en Quellón estuvo presente en el 100% de los viajes muestreados, a diferencia de jaiba mora y peluda que sólo se registraron en el puerto de Ancud (**Tabla 39**).

4.4.2 Fauna acompañante

Especies sin interés comercial

El bajo número de ejemplares de otras especies, 138 unidades, presentes en las trampas, en relación al número total de ejemplares, 7.241 unidades, permiten

concluir que a las trampas ingresan principalmente jaibas (Tabla 40).

En términos de variedad de especies se observó un aumento de fauna acompañante con la latitud desde Ancud a Pto. Chacabuco.

La descripción taxonómica del material recolectado como fauna acompañante se entrega en el **Anexo 7**.

Descarte de jaibas

Los resultados obtenidos muestran que los porcentajes de descarte, expresados en número de viajes por especie, varían entre un 29% y un 100%, dependiendo de la especie. La escasa información obtenida de los embarques en las zonas de pesca de Ancud, no permitió realizar estimaciones confiables, lo que queda de manifiesto al observar los intervalos de confianza (I.C) (**Tabla 41**).

A nivel de muestra se observó que los descartes varían entre 8% y 87% para la jaiba marmola (especie que registró las mayores capturas). El mayor descarte de individuos se observó en áreas de pesca explotadas por la flota asociada a Puerto Chacabuco (46%), mientras que jaiba patuda extraída en Ancud y jaiba reina en Quellón registraron niveles de descarte de 54% y 87%, respectivamente (**Tabla 42**).

En la X Región los descartes obedecen a los siguientes criterios: i) tamaño cefalotoráxico; ii) hembra ovífera; y iii) especies no solicitadas por comerciantes minoristas. Mientras que en la XI Región a los dos primeros criterios se le suma la falta de quelas o tamaño de estas y las jaibas con caparazón blando denominadas "jaibas de agua". Otras especies que se capturen como fauna acompañante son generalmente utilizadas por la tripulación para su propia alimentación, y no son comercializadas.

Los bajos niveles de fauna acompañante, como asimismo, la baja representatividad de las muestras, respecto del total de viajes de la flota, permite señalar que no tiene valor estadístico la estimación de los índices de importancia relativa y captura de fauna acompañante, por lo que dichos resultados fueron obviados.

4.5 Objetivo específico 2.2.5

"Caracterizar el canal de distribución asociado al recurso"

4.5.1 Estructura del canal de distribución

El canal de distribución de jaibas en ambas regiones es indirecto. Está conformado por un conjunto de estructuras y procesos que permiten el flujo físico del recurso/producto hasta el consumidor final, interviniendo diversos tipos de intermediarios que demandan y ofrecen el producto en distintos niveles de mercados. Entre los agentes se desarrollan interacciones financieras, de comunicación (información) y negociación que permiten al consumidor final disponer del producto (**Fig. 8**).

El principal mecanismo de coordinación del canal de distribución lo genera la empresa procesadora para efectuar su actividad productiva y comercial, presenta un nivel de integración vertical hacia atrás (productor) y hacia delante (mercado). La totalidad de las empresas consultadas se abastecen de materia prima a través de terceros, más de la mitad de las que abastecen el mercado nacional tienen oficina comercial propia, una fracción externaliza la venta en el mercado minorista y todas las que venden al mercado externo tienen exportadora propia (**Tabla 43**)

Si bien los distintos agentes que participan en el canal de distribución (plantaintermediario - comprador – pescador) son unidades independientes, se generan facilidades o medios de apoyo informales hacia la base de esta cadena (pescadores)

tendientes a asegurar el abastecimiento de los recursos pesqueros. En este sentido cobra relevancia el flujo financiero del canal de distribución que se expresa en el apoyo económico, en calidad de préstamo, a la flota para que pueda realizar sus faenas de extracción.

Según lo expresado por las empresas, este apoyo es propiciado por los proveedores dependiendo de las necesidades de abastecimiento. Sin embargo, se observan situaciones en que la empresa apoya a la flota a través del proveedor. Este vínculo entre proveedor/comprador y pescador permite al primero asegurar calidad, continuidad y cantidad en la entrega a la planta y al segundo asegurar su fuente de trabajo El apoyo consta generalmente de dinero en efectivo orientado a la compra de materiales y equipos, combustible y víveres. Además, se suministra carnada y en ocasiones se relaciona con necesidades que escapan a lo comercial.

Las empresas exportadoras se vinculan con agentes o socios comerciales en los mercados externos que organizan la colocación de los productos en función de la demanda en dichos mercados. A través de estos agentes conocen los requerimientos del mercado, los que posteriormente son traspasados hacia la base del canal de distribución.

Se identifican tres niveles de mercado que comprenden las diferentes etapas de transacción de los productos, desde que finaliza la fase extractiva. Ellos son: mercado de playa, mayorista y minorista. Cada agente comprador establece sus propias condiciones de abastecimiento (cantidad, calidad, oportunidad y precio), las cuales son transferidas a los pescadores incidiendo en su operación extractiva y en el resultado económico de la misma.

Mercado de playa

En este nivel de mercado interactúan los **Pescadores Artesanales** como oferentes de jaibas y los **Compradores** como demandantes. Los compradores mayoristas en playa se vinculan directamente con los pescadores para proveer de materia prima a la industria procesadora o al mercado de consumo en fresco nacional. Por lo general, cuentan con vehículos de transporte propio o arrendado.

En el caso de Ancud, hay también una fracción de compradores particulares, por lo general mujeres, que demandan pequeños volúmenes de jaiba para luego venderlos en ferias y/o mercados regionales del país.

Mercado Mayorista

En el mercado mayorista internacional, participan las empresas procesadoras/exportadoras vinculadas a la exportación de productos elaborados a partir de jaibas. Durante el 2004, se registraron 19 empresas que procesan regularmente jaibas en la X Región y solo 1 empresa (Pesca Chile) en la XI Región (Tabla 44). En la X Región se observó que el 16% de las empresas concentra el 92% de la producción regional, situación que se mantuvo 2005. Aproximadamente, el 50% de las empresas ofrece un producto propio al mercado y el resto complementa con servicio de maquila a otras empresas.

La mayoría de las empresas consultadas son de propietarios chilenos, excepto Transantartic y Pesca Chile que son de origen español.

El mercado mayorista nacional se localiza principalmente en las ciudades de Castro, Temuco, Talca y Ancud y en el Terminal Pesquero Metropolitano ubicado en Santiago, donde se comercializa el producto fresco.

Mercado Minorista

A nivel nacional como internacional este mercado corresponde a ferias, cadenas de supermercados, restoranes, entre los más importantes, donde los productos son vendidos tanto elaborados como en fresco, al consumidor final.

4.5.2 Conducta de los agentes que participan en el canal de distribución

Pescadores

Los pescadores orientan la venta de jaibas a los proveedores de plantas y/o de producto en fresco, cuya negociación se hace en forma individual. Una vez extraído el recurso y antes de venderlo no se realiza ningún tipo de manipulación, se conservan en las bodegas de la embarcaciones o bien en aquellas disponibles en el desembarcadero, mientras que otras son apozadas hasta ser vendidas.

De las consultas a los pescadores jaiberos se desprende que su nivel de conocimiento del mercado es limitado, por cuanto manejan información sólo hasta nivel de playa (**Tabla 45**). Identifican a las plantas que habitualmente compran jaibas (clientes), el precio que pagan por la materia prima en las diferentes caletas y las diferencias de calidad del recurso entre las mismas (competencia). Tienen un escaso conocimiento acerca del precio de exportación, del que paga el consumidor final y de los países a los cuales se vende el producto.

Compradores de materia prima en playa

Los compradores consultados se dedican exclusivamente a la jaiba durante todo el año, no obstante hay meses en que la actividad disminuye. En opinión de ellos, las principales causas de este descenso en la operación son los bajos rendimiento de

pesca, la escasez de pescadores jaiberos, bajas tallas del recurso, malas condiciones climáticas y la baja demanda de la empresa cuando realiza mantención y/o reparación de maquinarias y equipos.

Empresas compradoras de materia prima

La cartera de productos que comercializan la mayoría de las empresas entrevistadas es diversa, donde la jaiba es un producto complementario a la generación de sus retornos económicos (**Tabla 46**). De las 11 empresas entrevistadas sólo 2 de ellas (Comercial Isla Grande y Caleta del Caleuche) consideran como su principal materia prima la jaiba. La diversidad de productos y la escasez de materia prima ya sea de jaibas u otros recursos, mueve a las empresas a organizar su proceso de abastecimiento desde varias zonas. Tal situación, las condiciona a mantener un sistema de suministro de materia prima geográficamente abierto para cumplir con los niveles de producción que tienen comprometidos con sus clientes (**Tabla 47**).

La totalidad de las empresas procesan mayoritariamente jaiba marmola. Al respecto, el 70% de ellas señala que la mayor abundancia de este recurso es la principal razón para procesarla, un 60% considera que la talla es apropiada para las exigencias del mercado, mientras que un 40% manifestó que este recurso posee un mejor nivel de calidad antes de ser procesada. En menor grado las empresas trabajan con jaiba reina, mora y peluda.

En general las empresas procesadoras de la zona sur, se dedican mayoritariamente al rubro congelado. En forma poco significativa se observa el rubro conservas y fresco enfriado. En los tres casos se presenta el formato carne y pinzas. El 90% de los entrevistados señaló que estos productos tienen reconocimiento en el mercado internacional, mientras que entre un 10 a 20% manifestó que procesar jaibas es de bajo costo en infraestructura y además se emplea un corto tiempo en su

procesamiento.

Mercado

La jaiba es destinada a la industria procesadora o al mercado de consumo en fresco. Los productos procesados son comercializados en el mercado nacional y/o internacional. El 60% de las empresas consultadas comercializan en el mercado interno ofreciendo el 86% de ellas un producto congelado tanto en carne como pinzas. El 30% de las empresas vende al mercado externo principalmente pinzas y el 10% vende en ambos mercados el producto pinzas y carne en conservas.

En el caso del mercado externo, según cifras de enero-septiembre del 2005, los productos son comercializados en un 99% como productos congelados principalmente al mercado de Estados Unidos, secundado por el portugués. El 1% restante son conservas al mercado mexicano, ecuatoriano y canadiense.

De acuerdo a cifras de Prochile (2003), Estados Unidos ha importado más de US\$17,9 millones anuales de carne de jaiba, donde Chile tuvo una participación cercana al 30%, es decir, es el principal proveedor de jaibas a este mercado de un total de 18 proveedores. Junto con India, Canadá y China han concentrado el 80% de las importaciones.

El mercado de consumo en fresco se localiza en diversas regiones del país y Santiago. En estos lugares, el producto es transferido a través de diversos distribuidores al mercado minorista tales como: supermercados, ferias libres, restoranes, donde el consumidor final puede acceder a él.

4.5.3 Precios

Precios de playa

Las jaibas capturadas mediante buceo fueron comercializadas en la X Región entre \$150 y \$250 el kg, en tanto aquella obtenida por el sistema de trampas se transó entre \$140 y \$220 el kg (**Tabla 48**). Si se comparan estos valores con los registrados para otros recursos, se observa que presenta valores similares a los equinodermos (erizo, pepino de mar), gastrópodos, algas, crustáceos (picorocos) y algunos bivalvos (almeja, cholga y tumbao). En cambio el precio en playa de jaibas es inferior al que se transa para navajuela, choro zapato, huepo y ostras, llegando estos a duplicar o triplicar el valor de un kilogramo de jaiba (**Fig. 9**).

La totalidad de los agentes extractores (pescadores y dirigentes) consultados, señala que la modalidad de venta que tienen para la jaiba es individual. Tal escenario, les impide disponer de una buena capacidad negociadora para apropiarse de un mayor margen de comercialización, por lo cual habitualmente aceptan los precios y condiciones comerciales establecidas por los compradores.

Valor y precio de exportación

Hasta el año 2002 el valor de exportación de jaibas aumento en forma continua alcanzando los 5,4 millones de dólares (**Fig. 10**) para luego disminuir hasta el 2004 en un 22%. Tal situación se debe fundamentalmente a la baja de las cantidades exportadas acontecidas desde el 2001, significando una variación negativa del 31% con 558 toneladas en el 2004 (**Fig. 11**). El precio ha logrado amortiguar el efecto de la baja exportadora, pasando de 6,5 US\$/kg a 7,5 US\$/kg en el periodo 2000-2004, significando un aumento del 15%.

Las empresas exportadoras aceptan la conducta de precios que manifiesta el mercado internacional. Tal situación podría estar asociada a su baja participación en el mercado de un producto especifico, a factores estacionales y a los mercados altamente competitivos con los cuales negocian, donde se presenta una gran variedad de productos sustitutos o alternativos. Estos precios son transferidos por los diversos distribuidores y/o importadores vinculados al sector exportador, los cuales colocan el producto en el mercado mayorista y/o minorista del país destinatario.

El precio del producto carne es en promedio el doble de las pinzas y ha presentado una tendencia creciente hasta el 2004 alcanzando los 11,7 US\$/kilo. Sin embargo, transcurrido enero-septiembre del 2005 se ha manifestado una baja del 18% respecto a igual periodo del 2004. En el caso de las pinzas el precio se ha mantenido relativamente estable durante los últimos años (entorno a los 4,8 US\$/kilo), no obstante, durante enero-septiembre del 2005 presentó un valor de 5 US\$/kilo, un 20% más respecto a igual periodo del 2004 (**Fig. 12**).

4.5.4 Distribución de los ingresos entre los pescadores

El sistema de distribución de los ingresos entre los pescadores que componen la unidad productiva se denomina "a la parte", donde el porcentaje de las ganancias, luego de descontar los gastos de operación (combustible, víveres), que se lleva cada persona difiere entre localidades e incluso por métodos de extracción.

Existen dos modalidades de reparto de las ganancias para la flota que opera mediante buceo: i) donde al buzo le corresponde el 40% de las ganancias, un 20% recibe el material (embarcación) y el restante 40% se reparte entre la tripulación (2) y ii) se reparta en partes iguales, es decir, si a bordo de la embarcación van 2 buzos y 2 tripulantes, las ganancias se reparten entre cinco, recibiendo siempre una parte el dueño de la embarcación.

En el caso de la flota que opera con trampas también se observan dos modalidades en el reparto de utilidades: i) un 60% para el dueño de la embarcación y un 40% a repartir entre la tripulación (3 personas), donde el dueño también recibe su parte si forma parte de esta; ii) se reparte en partes iguales, donde el dueño de la embarcación recibe una parte, en este caso si una embarcación se conforma de 4 personas, las utilidades se reparten entre 6, una parte al dueño, una al material (dueño de embarcación y trampas) y una por cada tripulante, recibiendo cada uno un 16,7% de las ganancias.

4.6 Objetivo específico 2.2.6.

"Proponer nuevas medidas de regulación u ordenamiento para la pesquería, sobre la base de un diagnóstico de la misma".

4.6.1 Desembarques históricos

En la serie histórica de IFOP (1998-2005) se registra una mayor importancia de la captura realizada con trampas. Esta inicia la serie con valores superiores en un 40% por sobre las capturas realizadas con buceo, hasta llegar en el año 2005 a niveles casi del 95% superiores (**Fig. 13a**). Este incremento relativo, se explica tanto por el aumento de los niveles de captura registrados con trampas, como por la disminución paulatina que ha tenido la captura de jaibas por medio del buceo (**Fig. 13 b**).

Asimismo, se apreció que la X Región es la que explica los desembarques de jaiba por buceo, con niveles decrecientes de 520 t en 1998 a 95 t en el año 2005. Se observa también un escalamiento importante de los niveles de extracción con trampas a partir del 2002, superiores en un 150% respecto del promedio de los años anteriores, valores que desde dicho año disminuyen gradualmente hasta el año 2005 (**Fig. 13c**). En cuanto a los niveles de extracción registrados con trampas en la XI

Región, estas mostraron una disminución gradual desde el año 1999 (**Fig. 13c**). Sin considerar el sistema de pesca, se observa que los desembarques entre regiones tienden a equipararse a partir del 2003 (**Fig. 13d**)

De acuerdo a estas características de los datos, para abordar la actividad pesquera se consideró básicamente las variables asociadas a las trampas, tales como esfuerzo (Nº trampas caladas), desembarques (dimensión y distribución) y rendimientos de pesca.

Es importante hacer notar que la información compilada en la X Región, señala que durante el periodo de estudio, se registró operaciones de pesca provenientes de 78 procedencias, de las cuales sólo 4 concentran el 57% de los desembarques históricos y 7 el 50% de los viajes de pesca encuestados. Las procedencias que acumulan mayor desembarque histórico son: Bahía de Ancud (23%), Punta Chocoi (12%), Isla Cochino (12%), Isla Guapiquilan (10%), Punta Quillahua (8%), Amortajado (6%) y Ahui (4%).

En cuanto al esfuerzo aplicado, se registró 136 embarcaciones con operaciones de pesca sobre jaibas, de los cuales 11 han operado a lo menos en 6 de los 8 años considerados. Cabe señalar que en base a los desembarques del periodo histórico revisado, sólo 20 embarcaciones (15%) han dado cuenta del 70% del desembarque. Las tres zonas más visitadas por la flota muestreada, fueron Bahía de Ancud (11% de viajes encuestados), Isla Cochino (9%), Ahui (9%) y Amortajado (6%). Todas estas procedencias se asocian al puerto de operación de Ancud.

En la XI Región, el número de procedencias registradas fue de 76, de las cuales 3 acumulan en conjunto el 50% de los desembarques y 8 el 75%. Por su parte 48 de ellas (63%), acumulan en estos años, e individualmente, menos del 1% de los desembarques totales. En cuanto al esfuerzo, los registros históricos no han

diferenciado a lanchas que operan individualmente de aquellas (o las mismas) que han operado como naves acarreadoras. Obviando el tipo de operación que realizaron, de un total de 82 embarcaciones encuestadas, 7 de ellas registran el 70% del total desembarcado. De estas naves, se cuenta sólo con una que ha registrado capturas durante los últimos 7 años. Otras 4 registran actividad en 5 de los 8 años revisados.

A partir de la información analizada, se puede establecer que es posible obtener información de la tendencia del desembarque, esfuerzo y rendimientos de pesca para la X Región, siendo la información insuficiente para la XI Región, debido a que en años anteriores no se ha recopilado datos al interior de las faenas de pesca de este recurso.

En **Anexo 8**, se entrega como complemento la distribución batimétrica de los desembarques y su variación en el tiempo. Esto debido a que no se consideró como variable relevante para abordar la actividad pesquera de las regiones en estudio.

4.6.2 Migración intraanual o estacional

Atendiendo a la movilidad de las embarcaciones entre puertos, se observó que en general, la flota opera desde un mismo puerto base, sin registrarse migraciones intra anuales o estacionales. Sobre el respecto, del total de viajes realizados por las embarcaciones tramperas encuestadas en el periodo 1998-2005, el 94% de los viajes efectuados, fueron realizados desde el mismo puerto; el 5% de las embarcaciones registró operación en dos puertos y el 1% registró operación en 3 puertos. En estos dos últimos casos, la operación fue acotada a los años 1998 y 1999. El puerto que registra mayor actividad histórica, es Ancud.

4.6.3 Principales zonas de pesca

En la X Región, desde el punto de vista histórico, las principales zonas de pesca históricas se ubican preferentemente frente a Ancud y secundariamente en Quellón. No obstante lo anterior, a partir del 2002 se registró un aumento en las capturas provenientes de procedencias ubicadas frente a Dalcahue (**Fig. 14 y 15**). Durante el año 2005, se observa mayor actividad de pesca en las zonas asociadas a los puertos de Ancud y Dalcahue (**Fig. 16 y 17**).

Al observar las capturas por zona de pesca (**Fig. 18**) y considerando que entre las latitudes 41°S-42°S corresponderían a las zonas de pesca asociadas al puerto de Ancud, 42°S-43°S a Dalcahue, 43°S-44°S a las zonas de pesca asociadas al puerto de Quellón y desde el 45°S al 47°S a Puerto Chacabuco, se evidencia que las capturas de pesca asociadas a Ancud registraron un escalamiento a partir del año 2002, las capturas de las zonas de pesca asociadas a Dalcahue registraron un leve aumento; las zonas asociadas a Quellón mostraron una disminución y las asociadas a la XI Región una paulatina disminución gradual. De esta manera, se corrobora lo observado en las figuras 12 a 15.

4.6.4 Análisis de los indicadores de esfuerzo y rendimiento

Para efectos de generar los indicadores de esfuerzo y rendimiento, se utilizaron los datos de la flota que registró operación a lo menos en 6 de los 8 años revisados y actividad en la mayor parte del año. De este grupo de embarcaciones, se obtuvieron los desembarques, esfuerzo y rendimientos de pesca mensuales.

Los resultados obtenidos indican que tanto la serie de desembarques como de esfuerzo (número de trampas) registraron una tendencia al aumento entre mediados

del año 2001 y 2005 (**Fig. 19**). A nivel mensual, a partir del año 2002, los rendimientos registran una leve tendencia a la disminución.

Al considerar un gráfico boxplot de los rendimientos, se observa a nivel anual una leve tendencia a la disminución de la mediana de los rendimientos a partir del 2002 (**Fig. 20**).

Cabe señalar que el aumento del desembarque y el esfuerzo, se sustentó en una mayor explotación de la procedencia Bahía de Ancud (**Fig. 21**).

4.6.5 Indicadores biológicos

Para el recurso jaiba marmola en los puertos de Carelmapu, Ancud y Quellón en X Región y Puerto Chacabuco las tallas medias fluctuaron entre 112 mm y 142 mm, observándose una disminución de las tallas medias de ambos sexos en las procedencias explotadas por la flota de esos puertos entre los años 1998 y 2005.

En Puerto Chacabuco se observa por una parte una brusca disminución entre los años 1998 y 2002 para luego presentarse una estabilidad en los valores observados. A su vez registra los valores más altos de tallas medias entre ambas regiones (**Fig. 22**). Al igual que el análisis realizado para el periodo de proyecto por puerto y zonas, se vuelve a corroborar en el análisis histórico la diferencia de tamaños entre machos y hembras. Los datos de jaiba peluda, fueron más erráticos, lo cual también se puede explicar por los tamaños de muestra disponibles que en general son bajos.

En la XI Región, específicamente para Puerto Chacabuco, si bien existen diferencias entre las tallas medias a nivel de sexos, estas son menores a las registradas en la zona de Ancud, registrándose valores en torno a los 130 mm para ambos sexos en igual período de análisis (1998-2005).

Para jaiba marmola y considerando sólo las muestras colectadas en las principales zonas de pesca se observa un detalle de las tallas medias por mes en la **figura 23.**

Al explorar el comportamiento histórico de las estructuras del ancho de cefalotórax de jaiba marmola a partir de los muestreos realizados durante el periodo 1998 – 2005, se aprecian diferencias por sexo y puertos (**Fig. 24**). En cuanto a sexos, al comparar las medianas dentro de los mismos puertos, los machos registran valores mayores, con mayor amplitud de tamaños que las hembras, las cuales presentan estructuras más concentradas.

Entre puertos, se han registrado tamaños mayores en Quellón, al inicio de la serie, las que posteriormente, debido a la tendencia descendente de los tamaños en ese puerto a partir del año 2000, fueron superados por los registrados en Puerto Chacabuco. Igual comportamiento se aprecia tanto en machos como en hembras.

Los tamaños de los machos muestreados en el puerto de Quellón, estos registraron las mayores amplitudes. Junto a esto, dentro del mismo puerto se observaron tendencias descendentes intranuales de las medianas, con una leve disminución del rango de tamaños de los machos y tendencia descendente de las medianas de las estructuras de tallas de las hembras.

El puerto de Carelmapu registró una tendencia estable de las estructuras hasta el año 2001. Sin embargo, desde el año 2002 en adelante, se registra un cambio de escala, con estructuras de menor tamaño que los años anteriores, pero relativamente estables, con una reducción de la amplitud de la estructura de tamaños, a partir del mismo año.

Por su parte, los tamaños registrados en Ancud presentan en el caso de los machos una estabilidad y alta dispersión en las estructuras de los machos. Sin embargo, en

las hembras se aprecia una leve tendencia descendente de las medianas y valores del segundo y tercer cuartil.

Puerto Chacabuco presenta a partir del año 2002, una reducción de la amplitud de tallas, con estadísticos como la mediana y rangos intercuartiles 1 y 3 relativamente estables.

En cuanto a la proporción de sexos en el desembarque, si bien no se observan tendencias al interior de las procedencias, se registra una mayor proporción de machos en la zona de Puerto Chacabuco (**Figura 25**).

En relación al porcentaje BTML históricos de jaiba marmola, se observa que en Carelmapu progresivamente ha aumentado a través del tiempo, registrándose valores máximos en torno a los 65% en machos y 83% en hembras. Estos valores varían en Ancud a 74% en machos y 91% en hembras. Finalmente en Puerto Chacabuco se observan bajos porcentajes de este indicador con un máximo de 17% en machos y 23% en hembras (**Fig. 26**).

4.6.6 Rendimiento y biomasa por recluta

X Región

Las procedencias de pesca utilizadas para las estimaciones fueron seleccionadas en base a la importancia en los desembarques y su constancia en el tiempo, las que vienen siendo explotadas desde 1993 a la fecha.

Las estimaciones de F_{act} desde las curvas de captura (**Figura 27**) utilizando la metodología de Jones y van Zalinge (1982) y asumiendo el valor de mortalidad natural mostrado en la **tabla 49**, son de 0.218 año⁻¹ para machos y 0.315 año⁻¹ para

hembras. Esta clara diferencia en la tasa de mortalidad por pesca, indica que las hembras en la X Región se encuentran actualmente bajo mayores niveles de explotación que la población de machos. Esta situación es contradictoria, toda vez que la fracción explotable de hembras se ve reducida como consecuencia de la prohibición de explotación de hembras portadoras de huevos.

Las estimaciones de los PBR $F_{0.1}$, F_{max} y $F_{40\%}$ asumiendo una ojiva de selectividad logística (**Tabla 49**) con talla mediana de reclutamiento a la pesquería de 119,5 y 104,9 mm AC para machos y hembras respectivamente, son resumidas en la **tabla 50** y **figuras 28 y 29**.

Tanto para machos como para hembras, los niveles de mortalidades por pesca actuales (F_{act}) son sustancialmente más altos que las estimaciones de los PBR $F_{0.1}$ y $F_{40\%}$ (**Tabla 50**). Esta condición es más severa en la población de hembras, llegando a superar en un 46% la mortalidad por pesca que reduce en potencial reproductivo a un 40% (**Fig. 29**). En el caso de la población de machos, los PBR y Fact se encuentran muy cercanos indicando que el nivel de mortalidad por pesca se encuentra en el límite de la situación de sobrepesca (**Fig. 28**). Consistentemente con estos resultados, las estimaciones de Y/R y BD/R son más elevadas que el rendimiento y biomasa objetivo que conducen los PBR $F_{0.1}$ y $F_{40\%}$.

Los PBR F_{0.1} y F_{40%} aún son consideradas herramientas adecuadas para determinar el estatus de la población, utilizándolos como PBR objetivos que son precautorios con objeto de prevenir el colapso de una población. Los resultados obtenidos para la X Región indican que la población de jaiba marmola probablemente se encuentra en un proceso de sobrepesca, principalmente en la población de hembras.

XI Región

Las procedencias utilizadas para el análisis al igual que los criterios utilizados para la X Región fueron la importancia de ellos en los desembarques y su constancia en el tiempo.

La metodología de Jones y van Zalinge (1982) indica que los actuales niveles de mortalidad por pesca en la XI Región son de 0.399 año-1 para machos y 0.231 año-1 para hembras (**Fig. 30**). Estos niveles de explotación son notoriamente diferentes a los registrados en la X Región. En efecto, en la XI Región es clara la intencionalidad de explotación hacia los ejemplares machos, superando un 72% la explotación de ejemplares hembras. Esta condición de explotación es adecuadamente consistente con las medidas de manejo de la pesquería de jaiba en Chile. En particular, en esta zona se respeta la norma, debido a que el comprador solicita (a expresa petición de la empresa) individuos que tengan las pinzas grandes, única parte del cuerpo que es procesada por la industria.

La talla mediana de reclutamiento a la pesquería en la XI región es de 133,2 y 126,8 mm de AC para machos y hembras, respectivamente, y sus parámetros son resumidos en la **tabla 51**. Estas tallas de reclutamiento son mayores que las estimadas en la X Región, situación que es consistente con las diferencias estructurales de la población entre las dos regiones en estudio. Utilizando estos patrones de reclutamiento, las estimaciones de los PBR, F_{0.1}, F_{max} y F_{40%} son resumidas en la **tabla 52** y **figuras 30** y **31**.

Estos resultados sugieren que los actuales niveles de explotación de jaiba marmola en la XI Región son diferenciados por sexo (**Fig. 30** y **31**). En el caso de los machos, es claro que la tasa de mortalidad por pesca actual (F_{act}) es mayor que los PBR $F_{0,1}$ y $F_{40\%}$ en un 57% y 27%, respectivamente (**Tabla 52**). Esta situación indica que la

población de machos probablemente se encuentra sobreexplotada, y cualquier incremento en la mortalidad por pesca generaría importantes incrementos en Y/R (Fig. 30).

En el caso de la población de hembras, los actuales niveles de explotación (F_{act}) son sustancialmente más bajos que los PBR $F_{0,1}$ y $F_{40\%}$ (**Fig. 31**). Consistente con esto, el rendimiento por recluta podría ser incrementado en un 25% hasta alcanzar la mortalidad por pesca correspondiente a un $F_{0,1}$, y la biomasa desovante por recluta en un 63% hasta alcanzar la mortalidad correspondiente a $F_{40\%}$ (**Tabla 52**). Esto indica que la población de hembras en la XI Región aún no ha alcanzado la condición de sobrepesca.

4.6.7 Relación talla – alto quela (machos) y talla - ancho abdomen (hembras)

Para los machos de jaiba marmola, y a modo de ejemplo en la figura 32, se entregan dos nubes de puntos identificadas en la relación ancho cefalotorácico-alto quela en el puerto de Quellón (958), observándose un quiebre en la alometría a una talla aproximada de 130 mm. Del gráfico de la suma de cuadrados medios de los residuales estimadas para cada puerto y el total se desprende que la posición de los puntos de quiebre está en términos generales entre los 120 y 140 mm Esto indica que los machos maduran morfológicamente en ese rango de tallas y como consecuencia de ello cambia la relación de alometría (Fig. 33). La distribución que presentaron los residuales para todos los datos, muestra una bimodalidad insinuada pero muy desdibujada, lo cual es concordante con el hecho que los ejes de las elipses no sean paralelos (Fig. 34).

En hembras, el análisis de la relación ancho cefalotorácico-ancho abdomén, presentó una moda muy fuerte correspondiente a las hembras morfológicamente maduras y otra más pequeña que insinúa la presencia de un porcentaje muy

pequeño de hembras inmaduras, es decir, el mayor porcentaje de hembras capturadas son maduras (post-púberes) (**Fig. 35**).

4.6.8 Talleres de difusión y discusión de resultados. Opinión de los usuariosLos agentes que conforman la pesquería del recurso jaiba identificaron 16 temas como los principales de ser abordardos para mantener el recurso en el tiempo y mejorar su actividad productiva (**Tabla 53**).

Aspectos regulatorios

Identificar el esfuerzo efectivo que opera sobre el recurso fue planteado por la totalidad de los usuarios de la pesquería de ambas regiones. Los tres estratos están consientes de que el número de pescadores inscritos para su extracción es mayor al que opera en la actualidad.

Los pescadores también plantearon su temor a la operación de un mayor número de agentes extractivos que no registran actividad en forma permanente sobre el recurso jaiba. Esta situación la califican de riesgo en su estabilidad laboral, económica y social y en términos pesqueros consideran que constituye una amenaza para la sustentabilidad del recurso. Los usuarios plantearon como solución a esta situación restringir el acceso a la pesquería, "limpiar" los registros de pescadores autorizados para la extracción de jaibas de cualquier especie.

Se planteó que el criterio principal debería ser la acreditación ante el Sernapesca, del ejercicio de la actividad extractiva sobre el recurso (en cualquier especie), en un período no inferior a los últimos 12 meses desde que se solicite dicha acreditación.

Un segundo aspecto planteado fue el cierre de áreas de pesca por períodos, entendiéndose por ello una rotación de áreas. Este planteamiento responde a la

percepción de una disminución del recurso en las áreas de pesca, a pesar de aplicarse el mismo esfuerzo. Ellos señalaron que esta actividad la realizan en la actualidad sin acuerdos, sólo en base a la disminución que observan en sus rendimientos por viaje y que varía entre 2 a 4 meses.

Los extractores de la X Región, predominantemente tramperos, plantearon como medida el reducir la talla mínima de extracción a 100 mm, ya que observan en las capturas una gran proporción de ejemplares BTML, entre un 50 a 80%. Esta medida la sustentan en que: i) Se observa un alto número de ejemplares entre 100 y 120 mm de ancho cefalotoráxico; ii) las hembras portan huevos a partir de los 60 mm.

En la XI Región los pescadores señalaron que no tienen problemas en cumplir con la talla mínima legal, debido a la abundancia del recurso. Esto les permite responder adecuadamente con las exigencias del comprador que les solicita jaibas sobre los 130 mm.

Los compradores se plantearon positivamente respecto de una reducción en la talla mínima, pero mostraron una mayor preocupación en torno a la falta de fiscalización de las medidas ya existentes.

La planta procesadora planteo la necesidad de realizar una pesca de investigación que permita ver el estado real del recurso en la zona X Región. Su experiencia al respecto es que no se han realizado en jaiba estudios completos en conjunto con los usuarios (extractores e industria).

Sobre el Recurso

La falta de conocimiento biológico sobre las especies fue un tema planteado por los pescadores de ambas regiones. Básicamente con relación a la época de desove y al

proceso de muda. Con respecto a esto último, en la XI Región los extractores señalaron observar en algunas oportunidades en las trampas, la presencia de jaibas blandas, denominadas "jaibas de agua" (en muda), lo que atribuyen a enfermedades del ejemplar capturado.

La importancia de entregar información no esta arraigada en los extractores de jaibas de ambas regiones, perciben que no les brinda beneficio, por el contrario consideran que los puede perjudicar al entregar información acerca de sus niveles de captura, áreas de pesca y precio de venta.

Aspectos Económicos

Los pescadores presentaron como un problema la falta de compradores, la negociación individual y la fijación del precio por parte del intermediario. En ambas regiones los extractores negocian directamente su producción con el intermediario, que en el caso de la XI Región es una persona, lo que les impide transar el precio. Estiman que existiendo un mayor número de compradores, podrían negociar el precio.

En la XI Región existe un sindicato de jaiberos (Puerto Aysén), el cual no ha logrado vender la producción en conjunto, tanto por problemas internos como por la disposición de la empresa procesadora del lugar a no trabajar directamente con los pescadores sino con un intermediario.

Los siguientes temas fueron planteados en los talleres y no tuvieron aceptación, por no satisfacer sus necesidades o por falta de antecedentes: i) Instauración de vedas, en ambas regiones no las consideran necesarias; ii) Instauración de cuotas, se manifiestan en contra de ellas; iii) Variar el tipo de trampa, en la X Región desconocen el tema, manifestaron requerir mayores antecedentes y/o capacitación.

4.6.9 Análisis de las medidas de ordenamiento y administración vigentes sobre el recurso.

En base a los antecedentes recopilados y analizados en este proyecto, la talla mínima de extracción fijada en 120 mm de ancho del cefalotórax para las especies jaiba peluda y jaiba marmola es vulnerada en rangos que varían entre 2% y 99%, presentando una situación más crítica las áreas de pesca explotadas por la flota de Ancud. En la XI Región, las capturas que fueron desembarcadas en Puerto Chacabuco presentan niveles menores de extracción BTML, de hecho los valores históricos variaron entre 17% y 23 %. El análisis de los datos en términos latitudinales muestra sin lugar a dudas para ambos sexos una disminución en el gradiente norte- sur, mientras que entre sexos se observó una predominancia de hembras con altos porcentajes BTML por sobre los machos.

Un aspecto importante de analizar es si la talla mínima existente hoy día, responde adecuadamente a la medida precautoria de cautelar que las hembras provean de nuevos reclutas que puedan ingresar posteriormente a la pesquería y que los machos capturados hayan alcanzado a una talla inferior la madurez morfológica requerida para participar del apareamiento. Si bien en las pesquerías de jaibas se asume que no podría haber problemas con el reclutamiento, en la medida que las hembras están protegidas y por otra parte, los machos son poligínicos y las hembras retienen la esperma, es conveniente a la luz de los primeros resultados entregados en este informe revisar si la talla mínima responde a la protección de machos maduros morfológicamente, como también investigar posibles diferencias entre especies.

El cumplimiento de la prohibición de capturar hembras que portan huevos es acogida en un alto porcentaje por los pescadores, de hecho los niveles de hembras ovíferas presentes en los desembarques varía según el puerto, especie y mes entre un 0,03 y

35%, observándose sólo una fracción de meses con presencia de hembras ovíferas en los desembarques. En Carelmapu los valores variaron entre un 7,4 a un 35%, siendo el puerto que presenta los niveles más altos. En Ancud estos valores variaron entre un 0,1 y un 22,9%, mientras que en Quellón el valor mínimo estimado fue igual a 0,3% y el máximo fue de un 0,7%. Finalmente Puerto Chacabuco es la localidad que registra los menores valores entre un 0,03 y un 1%.

El hecho de establecer una medida de administración no significa que esta sea asumida por los distintos agentes. Si bien la presencia de hembras ovíferas en los desembarques es baja, persiste un amplio desconocimiento del efecto que puede significar en la población la extracción de estos ejemplares. La revisión bibliográfica evidenció una falta de conocimiento científico sobre temas tales como tiempo que las hembras portan los huevos, importancia de mantener stock de machos maduros, edad y crecimiento de jaibas.

Todos los antecedentes recopilados en este proyecto, unido a la revisión bibliográfica realizada sobre trabajos disponibles en la literatura nacional, indican que la población de la X Región se encuentra en una situación más vulnerable que las poblaciones de la XI Región. Los indicadores de: i) tallas medias por sexo; ii) hembras ovíferas en los desembarques; iii) porcentajes BTML por sexo; iv) rendimientos por áreas de pesca; y v) el alto número de pescadores autorizados para extraer estos recursos; se deben analizar con precaución ya que estos indicadores pueden indicar la existencia de problemas que afecten los stock disponibles o la mantención de ellos en el tiempo.

Los analizados realizados a escalas acotadas de procedencias indicaron que para el área estudiada en la X Región, existirían indicadores de que las hembras se encuentran actualmente bajo mayores niveles de explotación que la población de machos y que estos se encontrarían muy cercanos a una situación de sobrepesca.

Los niveles de explotación estimados para la XI región son notoriamente diferentes a los registrados en la X Región, existiendo una clara intencionalidad de explotación hacia los ejemplares machos, superando un 72% la explotación de ejemplares hembras, lo que podría indicar que la población de machos probablemente se encuentra sobreexplotada. Sin embargo, indicadores como tallas medias obtenidos para esta región históricamente han variado entre 104 y 144 mm, lo cual no se condice con una población con signos de sobreexplotación.

Los datos provenientes de evaluaciones realizadas sobre este tipo de crustáceos y sobre recursos bentónicos en general, se deben considerar como una referencia: Existen antecedentes de manejo de jaibas en Canadá y Estados Unidos donde estas pesquerías son llamadas "male only crab fisheries" las cuales son sustentables aún en ausencia de stock assessment, cuotas u otras medidas. La clave puede estar en la condición de los machos y hembras en su aspecto reproductivo. Mientras la condición reproductiva de las hembras no disminuya no existiría sobrepesca por reclutamiento.

5. DISCUSIÓN

Se observaron diferencias, entre la información de Sernapesca con la obtenida en el presente estudio, en relación al número de caletas con desembarque, flota por caleta y pescadores que registran actividad extractiva. Esto puede responder en los sectores rurales a que los pescadores desembarquen recursos en lugares cercanos al lugar donde habitan, o al convencimiento que deben declarar capturas para no perder el registro asociado al recurso. En la XI Región el hecho que los pescadores no desembarcan en sus puertos bases, enmascara y provoca distorsiones en relación a la información oficial. Sea cual fuere la razón las cifras presentaron gran discrepancia. Los pescadores que ejercen el esfuerzo efectivo manifestaron la necesidad de regularizar esta situación, revisándose los registros y quedando en la nómina sólo los que ejercen el esfuerzo real.

A su vez, una fracción de pescadores que no ejercen su derecho a pescar actualmente señalan que es a causa de: i) ausencia del recurso en las áreas de pesca habituales; ii) migración de pescadores a otras caletas de la región; y iii) falta de poder comprador.

La explotación del recurso se realiza mediante buceo y trampas. Este último sistema de operación fue descrito por Sotomayor en el año 1979. Posteriormente lo describió Martínez (1986), Valenzuela y Torres (1993), Pool et. al. (1998), Contreras (2000) y Barahona et. al. (2000). La operación con trampas no difiere mayormente a lo reportado en países como Colombia (Ramírez, 1991) y México (Gobierno de México, 2005). En la XI Región las trampas prácticamente permanecen en el agua, lo cual concuerda con el uso de embarcaciones más pequeñas y sin casilla o cubierta y sin sistema mecánico de calado y virado.

Valenzuela y Torres (1993), señalan que las trampas tienen las siguientes ventajas: a) su operación no requiere buzos como tripulantes, b) la faena es menos riesgosa, c) se evita el apozamiento del recurso y d) se puede acceder a mayores profundidades. La desventaja de este aparejo es el monto de inversión requerido en él, la monoespecifidad que genera a los pescadores que la utilizan y la menor selectividad que pudiese generarse, en comparación al buceo. Sin embargo, se ha observado que el apozamiento del recurso se realiza de igual forma y la monoespecifidad esta dada sólo en forma parcial para aquella fracción de pescadores que opera principalmente en la X Región.

El análisis de fauna acompañante, capturada en las trampas, reveló que una reducida fracción de las capturas presenta fauna acompañante. Estos resultados fueron corroborados por los pescadores y por Farías (2000), quien en una experiencia realizada en el Canal Tenglo para evaluar la operación de 2 diseños de trampas, de un total de 3.430 ejemplares capturados, sólo el 2,03% correspondió a otras especies, registrándose principalmente peces (Congrio colorado (*Genipterus chilensis*), Tollo de Cachos (*Scualus fernandinus*), Rollizo(*Pinguipes chilensis*), Róbalo (*Eleginops maclovinus*) y cabrilla (*sebastes capensis*), y cuya presencia, se puede explicar por las profundidades de calado (20 a 25 m) y el lugar donde desarrolló la experiencia.

Tanto en la captura de las especies objetivo como del bycatch, es posible observar que la mayor parte de la macrofauna proviene de fondos blandos, arenosos y/o fangosos, con escaso material procedente de fondos rocosos descubiertos. Junto con esto, las trampas son ubicadas en zonas de baja profundidad, cuya diversidad de especies, particularmente en la X Región, es menor que en zonas de mayor profundidad. Ambas características, baja profundidad y sustrato arenoso, señalarían menor diversidad de especies.

Entre los aspectos que Arana (Op. cit., basado en Krouse, 1989) menciona como importantes para la atracción, ingreso y retención de crustáceos en las trampas, están los factores ambientales, fisiológicos y de comportamiento, asociados a las características del sistema. De estas últimas aparecen como importantes: a) el diseño de la misma; b) la abertura de malla o de los listones que conforman sus paredes; c) la forma, tamaño y localización de las entradas, respecto de la ubicación de la carnada; d) el uso de mecanismos anti-escapes o que dificulten la salida de los ejemplares que han ingresado; e) el empleo de dispositivos que faciliten el escape de los organismos pequeños.

El diseño de las trampas usada por los pescadores, está orientado a mantener en su interior básicamente crustáceos, impidiendo la salida de estos. Un elemento a considerar, es que el tamaño de abertura de la malla que conforma la red, posibilita el escape de los ejemplares de pequeño tamaño, especialmente invertebrados que integran la macrofauna de cada sector (poliquetos, crustáceos, moluscos y peces pequeños). Por otra parte, dificulta sólo la salida de peces de tamaño mayor. Esto explicaría la mayor cantidad de crustáceos que conformaron la fauna acompañante encontrada, particularmente en la XI Región.

El tamaño de las embarcaciones, en ambas regiones no difieren a lo informado por Valenzuela (1993) y Barahona et. al. (2004), quienes señalan que este tipo de embarcaciones no sólo es utilizado para la extracción de jaibas, sino para una variedad de recursos bentónicos. Situación similar se observa en relación al equipamiento de la embarcación como a los implementos que compone el sistema de buceo.

Ancud ha sido uno de los puertos cuya flota ha explotado el recurso jaiba en forma permanente en la última década. Las áreas de pesca visitadas por su flota se ha mantenido en el tiempo, observándose un esfuerzo constante en áreas como Bahía

Ancud, Isla Cochinos y Mutrico, datos que coinciden con los establecidos por Pool et. al. (1998) y Barahona et. al. (2002, 2003, 2004). Lo anterior no significa que la flota artesanal no haya explorado en forma ocasional nuevas áreas, tales como Punta Lenqui, Nal, Punta Quillagua y Guabún, todas ellas explotadas por flota de otros puertos más cercanos, tales como Maullín, Carelmapu, Punta Corona, entre otros. Igual situación registra el puerto de Quellón, donde la flota se ha desplazado a caladeros ubicados en la XI Región. Sin embargo, se mantienen en explotación sectores que fueron informados en su oportunidad por Pool et. al. (1998) como son: Islas Coedita, Guapiquilan, Laitec y San Pedro, además de los sectores de Curanue, Quellón Viejo, Barra Chiguao, Canal Yelcho y San Antonio.

En la provincia de Llanquihue los sectores de Punta Chocoi y Canal de Chacao se mantienen como las principales zonas de pesca del puerto de Carelmapu, localidades que han sido informadas anteriormente como importantes por Pool et. al. (**op. cit.**) y Barahona et. al. (2004). Sin embargo durante el periodo de estudio se observó una importante disminución de la actividad de la flota de este puerto sobre el recurso jaiba.

Sotomayor (1979), Martínez (1986), Valenzuela (1993), Pool et. al. (1998), Contreras (2000) y Barahona et. al. (2004) establecen que la pesquería del recurso ha estado conformada por tres especies: jaiba marmola, jaiba peluda y jaiba mora. Se constató que en la X Región los desembarques están conformados por las tres especies mencionadas, además de jaiba reina, la cual es capturada esporádicamente. En contraposición en la XI Región, Puerto Chacabuco se captura sólo jaiba marmola, lo que corrobora lo informado por Barahona et. al. (2004). La empresa demandante de materia prima solo compra esta especie, por la similitud que tiene en el mercado internacional (especialmente España) con *Cancer pagurus* ("buey de mar").

Los valores de rendimiento de pesca obtenidos, mediante ambos sistemas de pesca en este estudio son similares a los reportados por Pool *et. al.* (*op. cit.*). Mientras que los valores de esfuerzo empleado en las trampas fue superior al registrado por Pool *et. al.* (1998), quienes en un período de muestreo similar registraron un 48% menos a lo estimado en este estudio: Las causas se pueden explicar por el menor número de trampas utilizadas. Valenzuela (1993) establece que el número de trampas que la flota disponía no superaba las 60, a diferencia de lo que se registra en la actualidad, cuyo promedio es de 81 trampas por embarcación (lancha) llegando algunas a tener 135 trampas.

La exigencia del intermediario de la XI Región en términos de no comprar ejemplares de tallas inferiores a 130 mm, a menos que el individuo con una talla inferior a esta medida posea quelípedos con pinzas grandes influyen fuertemente en la presencia en los desembarques de individuos BTML, en las tallas modales y en los porcentajes de individuos capturados por sobre los 120 mm. A través de este modo de operar se explican los bajos porcentajes de BTML que exponen los desembarques en esta Región (11,5% en machos y 9,5% en hembras). A diferencia de los observados en los centros de monitoreo de la X Región, donde los intermediarios, si bien exigen ejemplares sobre la norma, no obstaculizan la compra de jaibas bajo la talla mínima legal, explicando con esto los altos índices de individuos inferiores a 120 mm, porcentajes que alcanzan rangos entre 45,6% y 72,4% en machos y 82,9% y 93,5% en hembras. A nivel de tallas modales, los rangos de los puertos de la X Región exhiben valores entre 100 mm y 110 mm, en tanto los machos lo hacen entre los 110 mm y 150 mm (registrado en Quellón). Mientras que los desembarques de las faenas de la XI Región muestran una talla modal a los 130 mm. Sin embargo, este valor se robustece mayormente por los porcentajes que presentan los individuos sobre los 120 mm, los que en la XI Región llegan cercanos al 90%, en tanto, en la X Región la frecuencia de estos en los diferentes puertos de monitoreo no sobrepasan el 50%.

Contreras (2000) registró para jaiba marmola una talla de primera madurez sexual para hembras a los 95,78 mm (±0.09375 D.E), en la localidad de Calbuco (X Región). Considerando este parámetro de referencia, se establece que en todos los puertos monitoreados de la X Región se desembarca una fracción de individuos que aún no alcanzarían la primera madurez. En la XI Región, Martínez (1986) establece una talla de primera madurez sexual en jaiba marmola de 80 mm para machos y de 81 mm para hembra, estos resultados difieren de los estimados en este estudio para calificar que los machos morfológicamente están maduros. Se estima apropiado revisar estos temas biológicos que pueden llevar a conclusiones equivocadas.

Los resultados de los análisis de las relaciones longitud peso permiten sugerir que para las poblaciones de jaibas en las procedencias monitoreadas en Ancud se podría establecer un sistema de monitoreo por sexo, compuesto por muestras de las tres áreas de pesca estudiadas ya que no se verificaron diferencias significativas en los parámetros estimados. Del mismo modo para jaiba marmola en Dalcahue, Quellón y Puerto Chacabuco. Estos resultados demuestran que a pesar de las diferencias que puedan existir en las condiciones bióticas y abióticas de las distintas zonas de pesca por puerto no existen diferencias sustantivas en los parámetros estimados del modelo que describe la relación entre el ancho cefalotorácico y el peso corporal total. No obstante lo anterior, se mantienen las diferencias esperadas entre sexos.

La estructura del canal de distribución de la jaiba presenta una serie de flujos conectivos, entre los agentes (oferentes y demandantes) que participan en los distintos niveles de mercado (de playa, mayorista y minorista), que permiten transferir el producto al consumidor final. Es decir, se identifica un canal de distribución del tipo indirecto. Entre los pescadores, compradores en playa y plantas procesadoras se establece un grado de coordinación informal donde se desarrollan interacciones financieras, de comunicación (información) y negociación que los hace altamente dependientes entre si.

La dinámica comercial la genera principalmente las plantas de proceso, demanda altamente concentrada en pocas empresas en la X región y monopolizada en la XI, generando impactos en la negociación del precio pagado en playa. En menor grado se presenta una demanda para consumo en fresco la cual es más desagregada y desconcentrada.

El poder negociador de las empresas procesadoras, trasmitida a través de los compradores en playa, es distinta por cuanto su negocio se basa en un mix de productos donde la jaiba es un producto complementario a la generación de sus retornos económicos. Sin embargo, la oferta de productos a partir de jaibas al mercado externo e interno es altamente concentrada a nivel de elaboración (congelados) y productos (carne y pinzas), careciendo de un mayor valor agregado.

La estabilidad que ha mantenido el precio de playa en los últimos años, a pesar de que el precio de exportación ha subido, demuestra que la transferencia de las variaciones hacia los pescadores no siempre es proporcional. El precio del mercado internacional influye sobre el precio de playa ya sea por la presión de abastecimiento que ejercen las empresas, la calidad (calibres) y/o por la paridad cambiaria que afecta directamente al sector exportador.

Las empresas exportadoras también en cierta forma aceptan la conducta de precios que manifiesta el mercado internacional. Tal situación podría estar asociada a su baja participación en el mercado de un producto especifico, a factores estacionales y a los mercados altamente competitivos con los cuales negocian, donde se presenta una gran variedad de productos sustitutos o alternativos. La señal de estos precios es transferida por los diversos distribuidores y/o importadores vinculados al sector exportador, los cuales colocan el producto en el mercado mayorista y/o minorista del país destinatario.

Con excepción de algunos proyectos de prospección realizados en la década del 60 y dos estudios FIP desarrollados hacia fines de la década del 90, el monitoreo de las pesquerías de jaibas ha estado enmarcado en el desarrollo de los proyectos Diagnóstico de Pesquerías Bentónicas (1985 – 1994), financiado por la CORFO y el Seguimiento de Pesquerías Bentónicas (1995 – 2005), financiado por la Subsecretaría de Pesca, constituyendo en ambos casos la pesquería de estos crustáceos un recurso más objeto de estudio dentro del pool de recursos bentónicos a monitorear.

El sistema de monitoreo actual cubre los centros de desembarque que han aportado por sobre el 90% de los desembarques de jaibas a nivel de la X Región, ellos son: Quellón, Ancud, Dalcahue y Carelmapu. En la XI Región el 100% de los desembarques son registrados en Puerto Chacabuco, centro que también forma parte de la red de monitoreo de IFOP. Sin embargo, dos aspectos importantes que hay que abordar en un monitoreo dirigido a este recurso: El primero es la estimación de la captura global y el segundo aspecto es la necesidad de obtener cobertura de las faenas de pesca existentes en la XI Región. A través del proyecto "Seguimiento Pesquerías Bentónicas" sólo se monitorean los desembarques desconociéndose el área de operación, asociada a la captura, de las embarcaciones extractoras que operan asociadas a las faenas. El presente estudio, realizó monitoreos en algunas de las faenas, pero debido a los altos costos que implica mantener y desplazar personal entre cada una de ellas no fue posible tener una cobertura global. Se consideró la participación de los usuarios a través del uso de formularios donde ellos mismos recabaran la información referida a captura, esfuerzo (horas de reposo, número de trampas caladas) y fauna acompañante. Sin embargo, como se estableció anteriormente la importancia de entregar información no esta arraigada en ellos, ya que perciben que no les brinda beneficio, por el contrario consideran que los puede perjudicar al entregar información acerca de sus niveles de captura, áreas de

pesca y precio de venta. Estos motivos incidieron en que no pudiese llevar a buen término esta actividad.

Un aspecto que se debe atender es la probable pérdida de ejemplares por efecto de transporte. Las jaibas son transportadas a granel en grandes volúmenes en la XI Región, alrededor de 20.263 unidades por viaje (±7.364 D.S). Se sugiere investigar posibles pérdidas por transporte tanto en el lugar de desembarque como en planta7, estas últimas pueden estar asociadas a calidad de materia prima e incidir en un castigo en los precios de venta.

Las unidades de esfuerzo naturales en esta pesquerías son horas de buceo para las jaibas extraídas mediante buceo y horas de reposo, para el caso de las jaibas capturas mediante trampas. Ambas son registradas directamente en el caso de las embarcaciones extractivas que desembarcan en puerto y se desconoce el esfuerzo ejercido por las embarcaciones extractoras que operan en faenas. Se estima conveniente para mejorar el monitoreo explorar algunas formas de combinar piezas de información, por ejemplo: i) registros en puerto del número de botes atendidos por las acarreadoras, y ii) información sobre el número de días que la flota ocupó para completar la carga del viaje. Esta información unida al uso de data-loggers permitiría ir conformando una idea clara de la ubicación de los bancos y del esfuerzo ejercido en la pesquería.

Durante la ejecución del proyecto se experimentó con data loggers (actividad no comprometida en este estudio) en una fracción de viajes con el fin de obtener las trayectorias de las embarcaciones y explorar la obtención más precisa de los caladeros de las trampas. Por ser una experiencia piloto, el cual necesita aun algunos

⁷ En las plantas de la XI Región sólo se ocupan las pinzas de estos ejemplares, mientras que en la X Región la planta procesa todo el cuerpo de los ejemplares.

ajustes operacionales no se entregan los resultados en este informe. Sin embargo, una vez realizados estos, se sugiere implementar este sistema en las embarcaciones acarreadoras y extractoras, ya que este instrumento permitiría identificar la estructura espacial de la operación de la flota.

Los actores de una pesquería comparten información y participan en las actividades de control, monitoreo y manejo en la medida en que el sistema de manejo les ofrezca los incentivos apropiados. La implementación de cualquier plan de monitoreo, fiscalización o manejo requiere de la participación de los actores principales: pescadores, operadores de faenas y procesadores, dado que es la mejor manera de lograr obtener datos más precisos y fidedignos y poder efectuar un manejo de la pesquería con decisiones consensuadas.

El primer paso en la generación de un ámbito participativo es usualmente la convocatoria por parte de la autoridad de alguna forma de Comisión o Mesa Técnica, a la que concurren representantes de los distintos sectores para la discusión de los aspectos técnicos del manejo, y eventualmente para la discusión, diseño y/o modificación del propio plan de manejo. En el caso de la pesquería de jaiba esta actividad se observa como altamente factible, ya que el número de pescadores e industrias participantes sobre la pesquería es bastante reducido a nivel de puertos. Sin embargo, se ha observado en otras pesquerías, como el caso del huepo en la octava región, que si estas iniciativas se ven interrumpidas en el tiempo o se manejan solo en el ámbito político no funcionan en el tiempo.

En la medida que las industrias en conjunto con los pescadores asuman una mayor responsabilidad en los procesos de evaluación y manejo, se pueden mejorar las evaluaciones y obtener mejores resultados de manejo.

Cabe señalar que existe escasa información relevantes para la evaluación y diagnóstico de las diferentes especies que componen este recurso, los cuales no pueden obtenerse a partir del monitoreo de la pesquería, primordial objetivo de este estudio. Entre los indicadores necesarios de estudiar, se identifican referentes biológicos económicos y sociales. Entre los indicadores biológicos se pueden mencionar aquellos que dicen relación con los indicadores básicos del estado del stock de un recurso: La abundancia de las edades que componen el stock (en número o biomasa) y las tasas de mortalidad por pesca. A partir de estos dos indicadores se pueden obtener: Abundancia total del stock, reclutamiento y mortalidad por pesca. Importante además es considerar aspectos del ciclo reproductivo (desoves, mudas, fecundidad, tallas de primera madurez).

Las medidas de administración implementadas están orientadas a la protección de las hembras ovíferas y a proteger los individuos machos o hembras en su etapa reproductiva. Sin embargo, se observa que la condición biológica de estos recursos en esta fase debe llevar a la autoridad a proteger aun más a las hembras las cuales no solo son portadoras de los huevos sino del esperma. Por tanto, surge como primordial realizar un estudio a nivel de técnicas precisas (histología) del ciclo reproductivo y fecundidad de cada especie que compone la pesquería del recurso, como se establecía en los indicadores biológicos.

Entre los indicadores económicos se deben considerar: Costo total anual de la pesquería, ingreso total anual de la pesquería, renta anual de la pesquería, costo por unidad de esfuerzo e ingresos por unidad de esfuerzo, teniendo como datos básicos los costos fijos y variables de la unidad productiva.

Entre los indicadores sociales es importante establecer el nivel de empleo y la distribución de ingresos, teniendo como base: La distribución de trabajadores por actividad, los sistemas de distribución de utilidades, el sistema de remuneración al

trabajo auxiliar y los ingresos totales netos.

Todos estos indicadores deben realizarse como una propuesta de investigación global, cuyos resultados en conjunto a los obtenidos en este estudio, darán las pautas para un mejor ordenamiento de la pesquería.

6. CONCLUSIONES

Existen concordancias entre los distintos agentes que se debe regularizar el esfuerzo efectivo que se ejerce sobre el recurso jaiba, esto permitirá dar un paso importante en el ordenamiento de la pesquería. En la medida que los distintos actores compartan esta visión se avanzará en la regulación o el cumplimiento de otras medidas administrativas que hoy se vulneran, tales como las tallas mínimas de extracción y la prohibición de extracción de hembras ovíferas.

La flota, tripulación, métodos de extracción y régimen operacional asociado a la pesquería de jaiba es común a lo empleado en las restantes pesquerías bentónicas explotadas por pescadores artesanales, de hecho los mismos pescadores actúan sobre otros recursos alternativos, con excepción de los que operan con trampas en forma permanente en la X Región. En la XI Región, el concepto operacional que involucra el uso de embarcaciones transportadoras y la presencia de faenas es común en términos globales con otras pesquerías, erizo, entre las más importantes.

Los niveles de captura registrados muestran que las principales jaibas extraídas son la jaiba marmola y peluda, observándose desembarques de la primera de ellas por los dos métodos de pesca, buceo y trampas, en la X Región y sólo mediante trampas en la XI Región. Los valores estimados como el número de caletas con desembarques difieren de lo señalado en las cifras oficiales. Esto permite concluir que se requiere obtener una estimación de los desembarques y aunar esfuerzo con la entidad oficial para evitar distorsiones en estas estadísticas.

Los niveles de esfuerzo y rendimiento no son concordantes para las principales procedencias identificadas en base a sus niveles de captura, esto se explica por el

aumento en el número de viajes y no por el esfuerzo expresado en kg/h-de reposo o buceo. Los lugares con mayores rendimientos se ubican distante de los centros de desembarque lo cual explicaría la baja frecuencia de embarcaciones y viajes que registran.

Las capturas de jaibas presentan una alta proporción BTML, lo cual se observa principalmente en la X Región, donde en algunos años para hembras alcanzan sobre el 90%. En la XI Región los niveles estimados son muchos menores (cercanos al 10%).

La fauna acompañante de los desembarques de jaiba solo se aprecia en una cantidad menor de trampas, esto significa que los diseños de ellas permiten a los otros recursos entrar y salir, con excepción de peces de mayor tamaño. Esta situación también se relaciona con la profundidad de extracción donde este arte de pesca es calado.

El canal de distribución presenta la típica estructura observada para todos los recursos bentónicos explotados por la flota artesanal, donde a los pescadores el precio de venta de la captura es fijado previamente por el comerciante o intermediario, el que su vez trabaja abasteciendo una o más empresas.

No se considera apropiado proponer nuevas medidas de regulación, más bien se considera necesario efectuar ajustes a las ya existentes, que permitan el ordenamiento del esfuerzo y un trabajo en terreno que permita aumentar el conocimiento sobre la biología del recurso a nivel de los distintos agentes, fortaleciendo así la comprensión de las medidas implementadas.

Se requiere implementar estudios específicos que permitan generar indicadores del estado principalmente de la población de hembras, periodos de portación de huevos,

periodos de muda, entre otras, teniendo como referencias las pesquerías llamadas SSS (sex, size, season) las que se sustentan en que los machos son poligínicos y las hembras almacenan espermas en sus espermatecas, lo que permite sustentarlas sin requerimientos de stock assessment, cuotas u otra medida.

El perfeccionamiento de las normas de administración requiere la participación activa de los agentes involucrados en la pesquería, la socialización del conocimiento entre los distintos agentes, pescadores, compradores, intermediarios, empresarios, funcionarios públicos de fiscalización, administradores y técnicos. Sin la participación activa de cada uno de ellos no se logra perfeccionar en la práctica las normas ya existentes o las que se quieran implementar en términos verticales.

7. BIBLIOGRAFÍA CONSULTADA

- Adrew, N.L. & Y. Chen. 1997. Optimal sampling for estimating the size structure and mean size of abalone caught in a New South Wales fishery. Fishery Bulletin 95: 403-413.
- Alvear, K. 2004. El Litoral Rocoso. Capítulo 19., Págs. 417 a 446, en Tomo II de: "Biología Marina y Oceanografía: Conceptos y Procesos". C. Werlinger (Ed.). Trama Impresiones, U. de Concepción, Concepción. Págs. 389 696.
- Arana, P. 2000. Pesca exploratoria con trampas alrededor de las islas Robinson Crusoe y Santa Clara, archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 39 52.
- Barahona, N., A. Olguín, C. Vicencio, V. Pezo, Z. Young, M. Nilo, E. Palta, M. Ortego, H. Miranda, P. Gálvez, C. Romero y C. Toledo. 2003. Investigación Situación Pesquerías Bentónicas 2002. Informe Final. Instituto de Fomento Pesquero. 138 pp + Anexos.
- Barahona N., C. Vicencio, A. Olguín, Z. Young, J. C. Saavedra, M. I. Ortego y C. Toledo, 2004. Programa de Seguimiento del Estado de Situación de las Principales Pesquerías Nacionales. Informe Final. Proyecto Investigación Situación Pesquerías Bentónicas 2003. Subsecretaria de Pesca-IFOP. 116 pp + Anexos.
- Barahona N., A. Olguín, C. Vicencio, V. Pezo, Z. Young, Patricio Gálvez, Marcelo Nilo y E. Palta, 2005. Programa de Seguimiento del Estado de Situación de las Principales Pesquerías Nacionales. Informe Final. Fase II. Proyecto Investigación Situación Pesquerías Bentónicas 2004. Subsecretaria de Pesca-IFOP. 145 pp + Anexos.
- Boschi, E. 1984. Estúdio biológico pesquero de la centolla (*Lithodes antarcticus*) del Canal Beagle, Tierra del Fuego, Argentina, INIDEP, Contribución 441: 9-95.

- Butler, M., C. LeBlanc, J. Belbin y J. MacNeil. 1990. Cartografía de recursos marinos: un manual de introducción. FAO, Documento Técnico de Pesca Nº 274. 281 p.
- Caddy, J. F., editor. 1989. Marine invertebrate fisheries. Their assessment and management. John Wiley & Sons, New York.
- Carrasco, C. y N. Silva. 2005. Distribución de temperatura, salinidad, Oxígeno disuelto y nutrientes entre Puerto Montt y Boca del Guafo. Crucero 10 CIMAR FIORDOS, Informes Preliminares: 35-45.
- Cochran. 1977. Sampling techniques. John Wiley & Sons Inc. New York. 513 p.
- Contreras, C. 2000. Talla de primera madurez sexual, fecundidad y datos biométricos de las jaibas hembras Cancer edwardsii y Cancer coronatus en las zonas de Calbuco y Maullín, X Región. Tesis para optar al Título de Ingeniero en Pesquerías. Universidad Austral de Chile. 76 pp.
- Choupay, U. 2003. Dieta de la nutria de río sudamericana, *Lontra provocax* Thomas 1908, (Mammalia, Carnivora, Mustelidae) en el Parque Nacional Laguna San Rafael. Tesis para optar al título de Biólogo Marino, U. Valparaíso, i-x+1-50.
- Dikinson, G. 1985. Maps and air photographs: images of the earth. London, Edward Arnold, 348 pp.
- Dobson, A. J. 1983. Introduction to Statistical Modeling. Chapman and Hall, New York.
- Gobierno de México. 2005. Proyecto de Norma Oficial Mexicana. Pesca responsable de jaibas en aguas de jurisdicción Federal del Litoral del Océano Pacífico. Especificaciones para su aprovechamiento. 15 pp.
- Gutiérrez, M. y O. Zuñiga. 1976. Cancer setosus Molina, en la Bahía de Mejillones del Sur (Crustacea; Brachyura). Rev. Biol. Mar. 16 (1): 1-25.
- Henriquez, G. 1987. Diagnostico de las principales pesquerías nacionales demersales (crustáceos). Zona Central. Santiago, CORFO-IFOP. AP87/7.

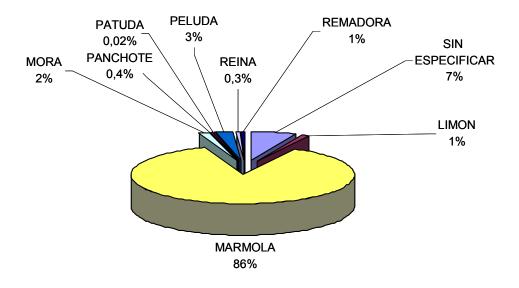
- Horbowy, J. 1996. The dynamics of Baltic fish stocks on the basis of a multispecies stock-production model. Canadian Journal of Fisheries and Aquatic Sciences/Journal Canadien des Sciences Halieutiques et Aquatiques.

 Ottawa **53**(09): 2115-2125.
- Hernández, R., C. Fernández y P. Baptista. 1998. Metodología de la Investigación. McGraw-Hill, México.
- Inostroza, C., R. Gili y R. Salas. 1982. Programa de Investigación de los recursos Centolla, Centellón y Jaibas. II. Resultados del estudio CORFO-IFOP. Chile. 168 pp + Anexos.
- John, D. M., R. Foster-Smith, G. L. Paterson, M. E. Ramírez, N.J. Evans, M. E. Spencer Jones, D. G. Reid. & T. J. Ferrero. 2002.. A "Biotope" approach to the marine benthic biological assemblages of the Laguna San Rafael Nacional Park, Chile. Boletín del Museo Nacional de Historia Natural, Chile, 51:159-173.
- John, D. M.,, G. L. Paterson, N.J. Evans, M. E. Ramírez, M. E. Spencer Jones, P. D. Báez, T. J. Ferrero, C. A. Valentine & D. G. Reid. 2003. Manual de Biotopos Marinos de la Región de Aysén, Sur de Chile (A Manual of Marine Biotopes of Región Aysén, Southern Chile: The Laguna San Rafael Nacional Park, Estero Elefantes, Chonos Archipelago and Katalalixar). London, Biodiversity Aysen Project. 127 pp.
- Jones, R. y N.P. van Zalinge. 1982. Estimates of mortality rate and population size for shrimp in Kuwait water. Kuwait Bull. Mar. Sci., 2: 273-288.
- Kritzer, J.P., C.R. Davies & B. D. Mapstone. 2001. Characterizing fish populations: effects of sample size and population structure on the precision of demographic parameter estimates. Can. J. Fish. Aquat. Sci. 58: 1557-1568.
- Krouse, J. S. 1989. Performance and selectivity of trap fisheries for crustaceans. En:
 J. F. Caddy (ed.). Marine invertebrate fisheries: Their assessment and management. John Wiley and Sons, New Cork, pp. 307 325.

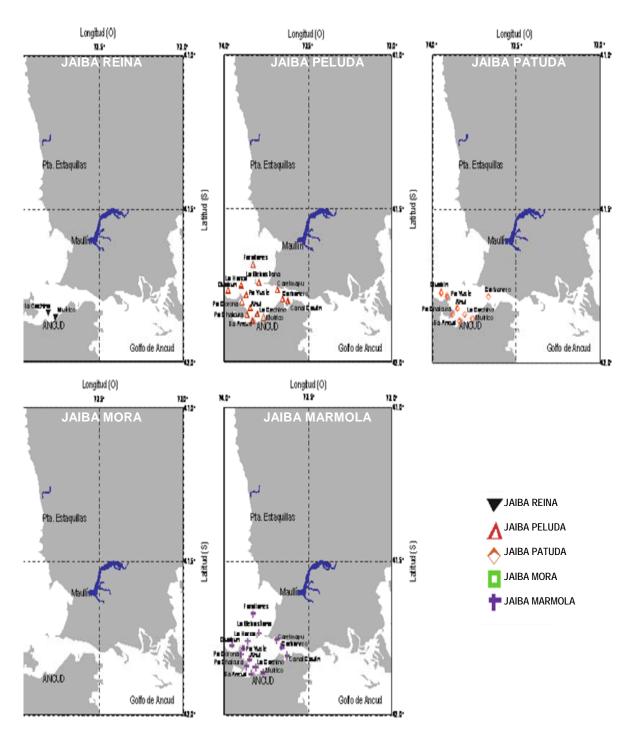
- Lai,H.-L. y Bradbury, A. 1998. A modified catch-at-size analysis model for a red sea urchin (*Strongylocentrtus franciscanus*) population. *En* Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and Management. *Editado por* G.S. Jamieson and A. Campbell. Can. Spec. Publ. Fish. Aquat. Sci. 125: 85-96.
- MICROIMAGES. 1997. TNTmips. The map and image processing system: User's Guide, NE, USA.
- Neter, J. W. Wasserman y M.H. Kunter. **1990**. Applied Linear Statistical Models: Regression, analysis of variance and experimental designs. IRWIN. Boston, USA.
- Ojeda, P. 1982. Iconografía de los principales recursos pesqueros de Chile. Subsecretaría de Pesca, Chile
- Olguín, A. y G. Jerez, 2003. Chile. Especies Bentónicas de Importancia Comercial. Serie Chile: Recursos Pesqueros Nº 1, 2003, IFOP, 30 pp.
- Osorio, C. 1999. Gastrópodos Prosobranquios del extremo sur de Chile. Bol. Mus. Nac. Hist. Nat., Chile, 48: 37-49.
- Osorio, C. 2002. Moluscos Marinos en Chile Especies de Importancia Económica guía para su identificación. Ed. Facultad de Ciencias, Universidad de Chile. Santiago. 212 págs.
- Orensanz, J.M. & G.S. Jamieson. 1998. The assessment and management of spatially structured stocks: an overview of the Noth Pacific Symposium on Invertebrate Stock Assessment and Management. In Proceedings of the Noth Pacific Symposium on Invertebrate Stock Assessment and Management. Edited by G.S. Jamieson & A. Cambell. Can. Spec. Publ. Fish. Aquat. 125. pp 441-459.
- Orensanz, J.M., Parma, A.M. y Hall, M.A. 1998. The analysis of concentration and crowding in shellfish research. *En* Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and Management. *Editado*

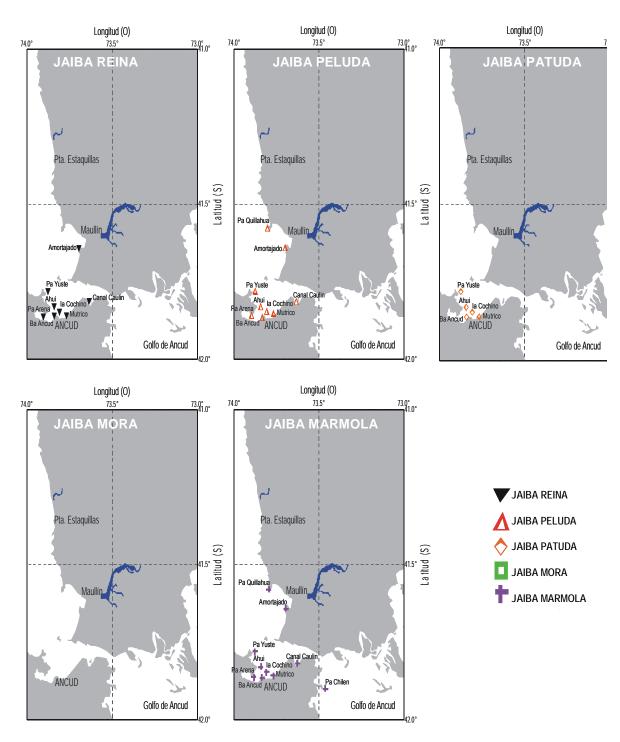
- por G.S. Jamieson and A. Campbell. Can. Spec. Publ. Fish. Aquat. Sci. 125: 143-158.
- Parma, A., J.M. Orensanz, I. Elías & G. Jerez. 2003. Diving for shellfish- and data: incentives for the participation of fishers in the monitoring and management of artisanal fisheries around southern south America. Towards sustainability of data_limited multisector fisheries. Edited by S.J. Newman, D.J. Gaughan, G. Jackson, M.C. Mackie, B. Monoly, J St. John & P. Kailola. Fisheries Ocassional Publications. n° 5, June 2003 Department of Fisheries, Perrt, Western Australia.
- Paterson, G. L., John, D. M., Spencer-Jones, M. Ramírez, M. E., Báez, P., Soto, E., Evans, N. J., Ferrero, T. J., Valentine, C., Letelier, S., Clark, P. F., & D. G. Reid. Marine Biology of the Intertidal and Shallow Subtidal Region of Aysén. M.S. de 37 págs.
- Pool H., C. Montenegro, C. Canales, N. Barahona y C. Vicencio. 1998. Análisis de la pesquería de jaiba en la X Región. Informe Final Proyecto FIP 96-35. 76 pp + Anexos.
- Ramírez, A. 1991. La Pesca Artesanal de Crustáceos (Jaibas) y Moluscos del Pacífico Colombiano. Memorias del Seminario Regional sobre Evaluación de Recursos y Pesquerías Artesanales. Rev. Pacífico Sur 19. 221-227.
- Ramírez, M. E. y B. Santelices. 1991. Catálogo de las algas marinas bentónicas de la costa temperada del Pacífico de Sudamérica. Monografías Biológicas de la Facultad de Ciencias Biológicas de la Pont. U. Católica de Chile (5): 1-437.
- Reid, D. G. & C. Osorio. 2000. The shallow-water marine Mollusca of the Estero Elefantes and Laguna San Rafael, southern Chile. Bull. Nat. Hist. Mus. Lond (Zool.), 66 (2): 109-146.
- Retamal, M. A. 1981. Catálogo ilustrado de los crustáceos decápodos de Chile. Gayana Zoología, 44:
- Retamal, M. A. 1994. Los Decápodos de Chile. Universidad de Concepción,

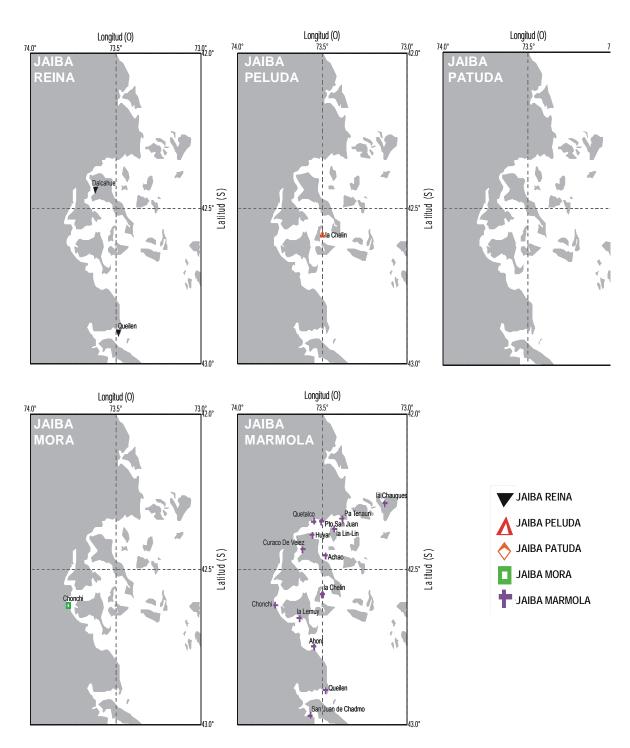
- Proyecto de desarrollo de la Docencia, (Ed.) Vicerrectoría académica Dirección de Docencia. Concepción. i-xv +1-256.
- Retamal, M. A. 2003. Biodiversidad carcinológica (Decapoda y Stomatopoda) en los fiordos occidentales entre El Guafo y Estero Elefantes. Resultados Crucero CIMAR 8, Informes Preliminares: 101-108.
- Retamal, M. A. y M. Gorny. 2001. Decápodos de los fiordos de Chile (CIMAR-Fiordo 3). Cienc. Tecnol. Mar., 24: 91-97.
- Robotham H. 1995. Curso Regional "Muestreo en poblaciones biológicas". Instituto Nacional de Pesca, Programa VECEP ALA92/43, Ecuador.
- Rozbaczylo, N. 1985. Los Anélidos poliquetos de Chile: Indice sinonímico y distribución geográfica de especies. Monografías Biológicas de la Facultad de Ciencias Biológicas de la Pont. U. Católica de Chile (3): 1-284.
- Sanhueza, A., Aranda, E. & G. Celedón. 1977. Resultados de experiencias de pesca de centolla con trampas. Informe IFOP. 33 págs.
- SERNAPESCA (Servicio Nacional de Pesca) 2001. Anuario Estadístico de Pesca.
- SERNA<u>PESCA</u> (Servicio Nacional de Pesca) 2002. Anuario Estadístico de Pesca.
- Sotomayor, A. 1979. Determinación del Rendimiento de las nasas dirigidas a la captura de Crustáceos. Informe de Práctica para optar al título de Técnico Universitario de Pesca. Universidad Técnica del Estado. Puerto Montt. 79 pp.
- Thompson, S.K. 1992. Sampling. New York: Wiley.
- Thompson, W.F. and F.H. Bell, 1934. Biological statistics of the Pacific halibut fishery. 2. Effect of changes in intensity upon total yield and yield per unit of gear. Rep. Int. Fish. (Pacific Halibut) Comm., (8):49p.
- Valdovinos, C. 2004. Ecosistemas estuarinos. Capítulo 18., Págs. 397 a 414, en Tomo II de: "Biología Marina y Oceanografía: Conceptos y Procesos". C. Werlinger (Ed.). Trama Impresiones, U. de Concepción, Concepción. Págs. 389 696.
- Valdovinos, C., Navarrete, S. & P. Marquet. 2003. Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole?

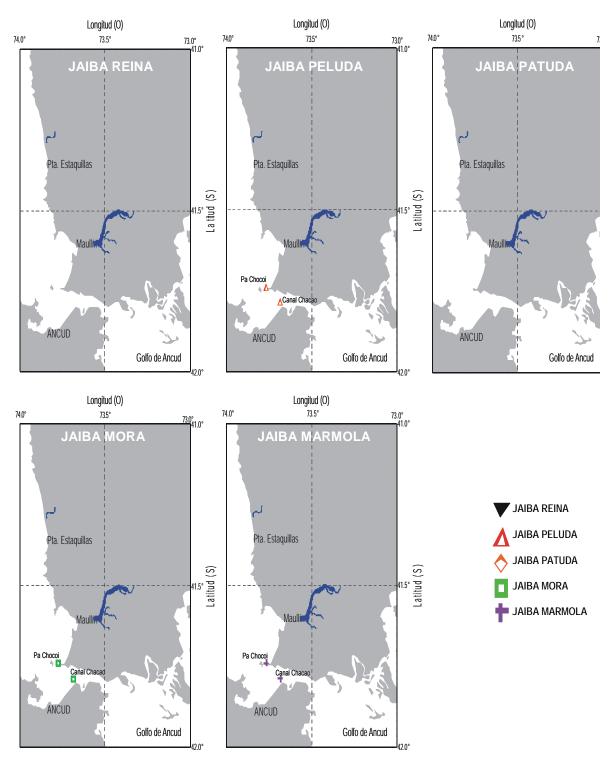

- Ecogeography, 26: 239-244.
- Valdovinos, C., Cárdenas, J. Aldea, C. Moya, C. & G. Mancilla. 2005. Patrones espaciales de diversidad de moluscos marinos en el límite norte de la Provincia Magallánica (CONA-C10F 04-20). Crucero CIMAR 10 FIORDOS, Informes Preliminares: 135-144.
- Yoshimoto, S.S., and Clarke, R.P. 1993. Comparing dynamic versions of the Schaefer and Fox production models and their application to lobster fisheries. Can. J. Fish. Aquat. Sci./J. Can. Sci. Halieut. Aquat. 50(1): 181-189.
- Young, Z. 1994. Plan metodológico para estimar el desembarque artesanal de recursos pesqueros. Tesis Magister en Bioestadística. Escuela de Salud Pública. Facultad de Medicina. U. de Chile. 50 pp + anexo.
- Young, Z., J. C. Saavedra, M. Miranda; H. González & N. Barahona. 2002a. Estimación de tamaños de muestra en la pesquería de huepo y erizo. Informe de Avance Complementario. Investigación Situación Pesquerías Bentónicas, 2002. IFOP. 13 pp + Anexo.
- Young, Z., J.C. Saavedra, H. Miranda, M. González & F. Cerna. 2002b. Estimación de tamaños de muestra en la pesquería de pez espada. Informe de Avance Complementario. Proyecto: Investigación Situación Pesquerías Recursos Altamente Migratorios, 2002. IFOP. 10 pp + Anexo.
- Young, Z., J.C. Saavedra & C. Vicencio. 2004. Estimación de tamaños de muestra en la pesquería de almeja, culengue y navajuela. Proyecto: Investigación Situación Pesquerías Bentónicas, 2003. Documento Técnico, IFOP-SUBPESCA.
- Young, Z., J.C. Saavedra, H. Miranda; L. Caballero, C. Martínez y M. González. 2003a. Determinación de Tamaños de Muestra en la Pesquería Pelágica, Zona Norte. Proyecto: Investigación Situación Pesquería Pelágica Zona Norte, 2002. Documento Técnico, IFOP SUBPESCA. 22 p + Anexo.

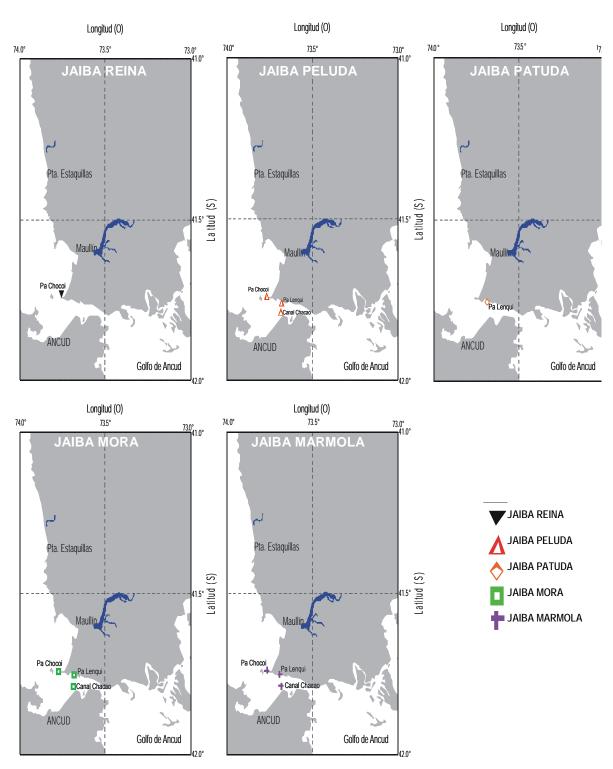
- Young, Z., J.C. Saavedra, H. Miranda; L. Caballero, A. Aranis y M. González. 2003b. Estimación de Tamaños de Muestra en la Pesquería Pelágica, Zona Centro-Sur. Proyecto: Investigación Situación Pesquería Pelágica Zona Centro-Sur, 2002. Documento Técnico, IFOP SUBPESCA. 21 p + Anexo.
- Zagal, C., Hermosilla, C. y A. Riedemann. 2001. Guía de invertebrados marinos del litoral valdiviano. Quebecor World Chile S. A., Santiago. 219 págs.
- Zar, j. H. 1999. Biostatistical analysis. 4th ed.

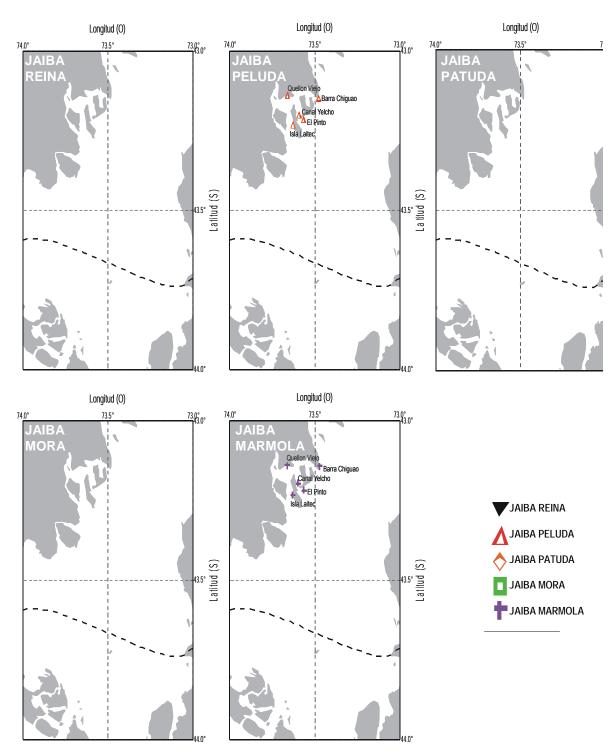

FIGURAS

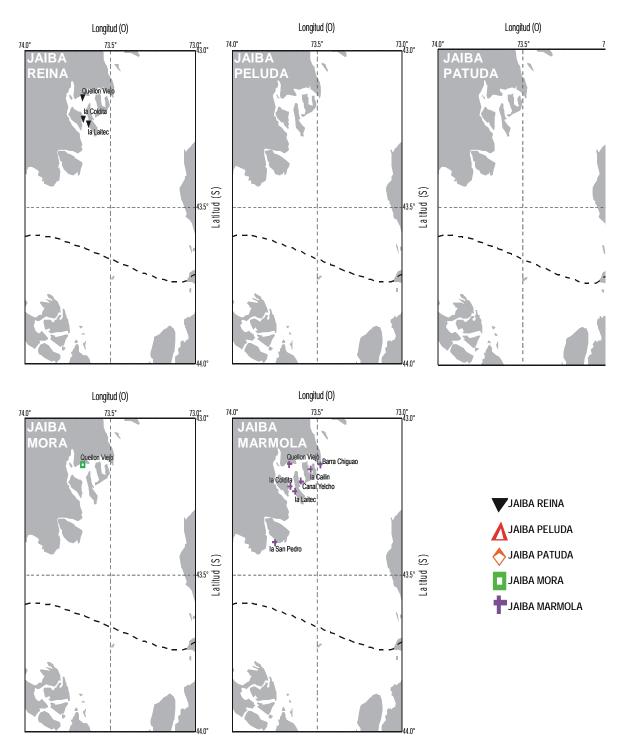

Figura 1. Desembarque (t) en Chile de las especies que componen el recurso jaiba, 2004 (Elaborado a partir de información de Serna<u>pesca</u>)

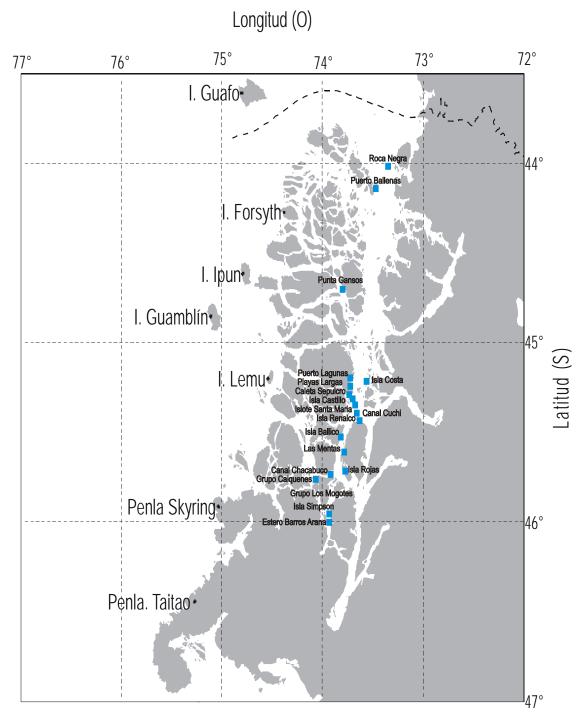

Figura 2a. Ancud. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante buceo.

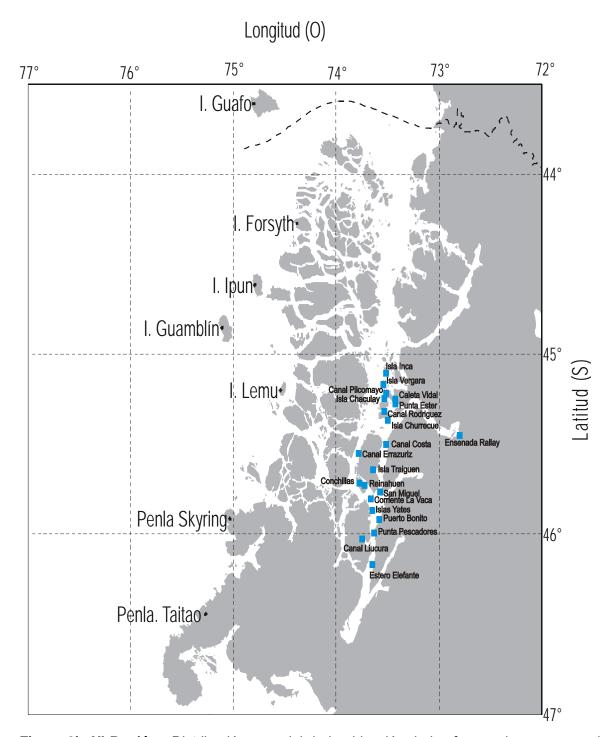

Figura 2b. Ancud. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.

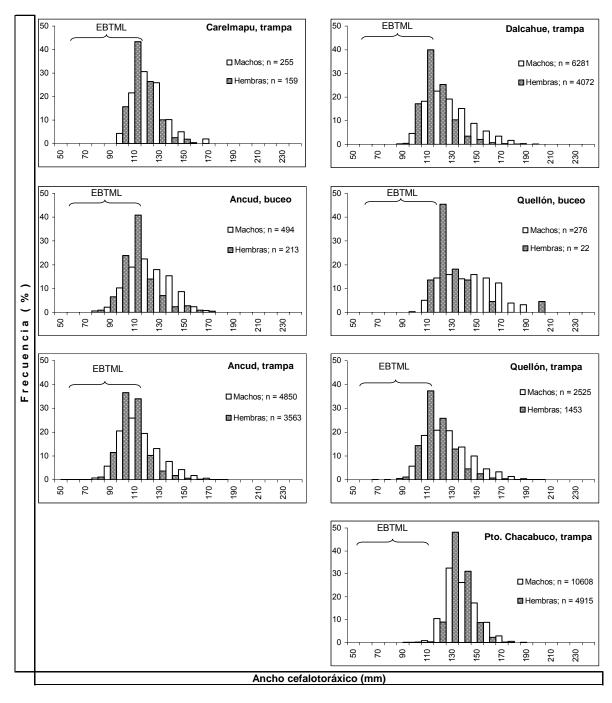

Figura 2c. Dalcahue. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.

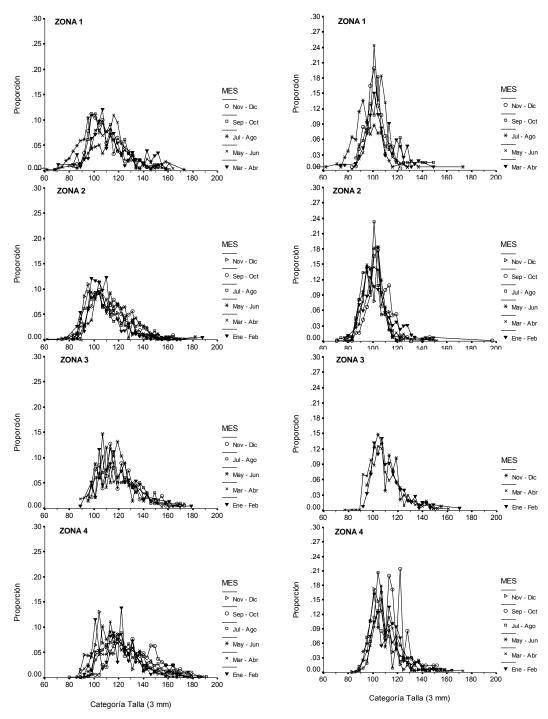

Figura 2d. Carelmapu. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante buceo.

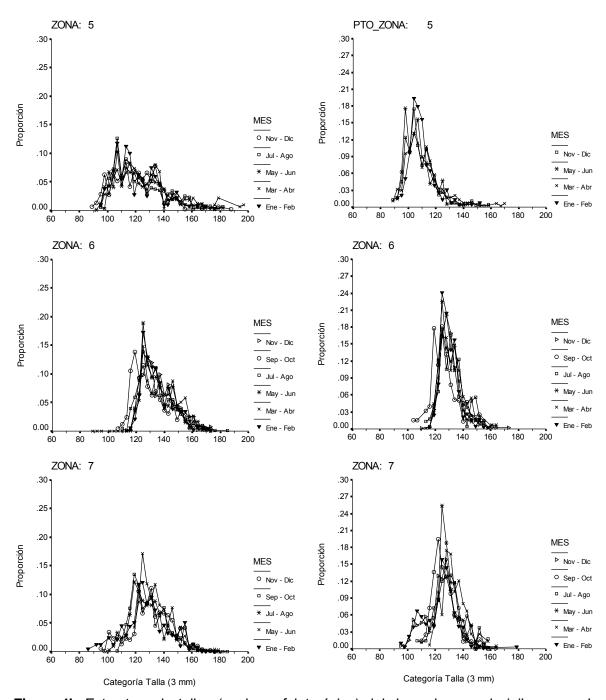

Figura 2e. Carelmapu. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.

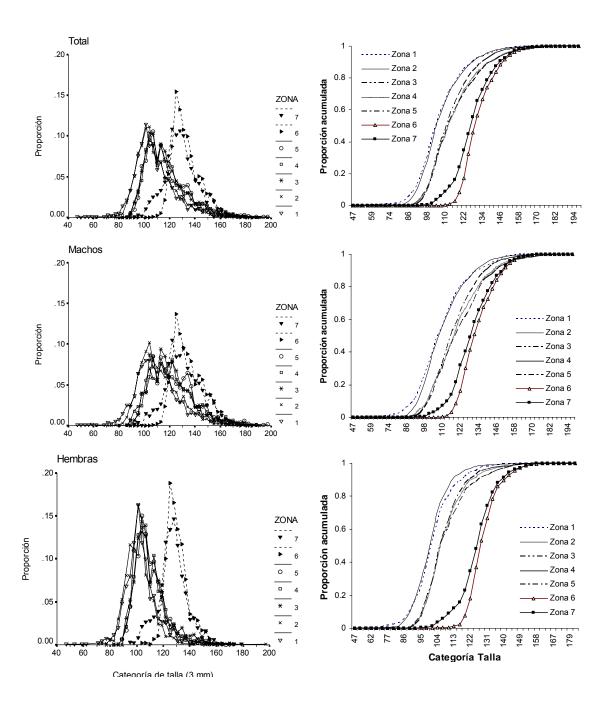

Figura 2f. Quellón. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante buceo.

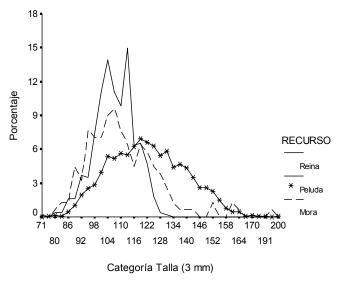

Figura 2g. Quellón. Distribución espacial de las procedencias de pesca visitadas por la flota para la extracción de jaibas mediante trampas.


Figura 2h. XI Región. Distribución espacial de la ubicación de las faenas de pesca para la extracción de jaibas mediante trampas.


Figura 2i. XI Región. Distribución espacial de la ubicación de las faenas de pesca para la extracción de jaibas mediante trampas.


Figura 3. Regiones X y XI. Estructuras de tallas de C. edwardsii, desembarcadas por puerto según arte de pesca. Noviembre 2004 — Octubre 2005 (EBTML: Ejemplares bajo la talla mínima legal).


Figura. 4a. Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba marmola, por sexo, zona (1 a 4) y periodo. Nov-dic 2004 y ene-oct 2005.


Figura 4b Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba marmola, por sexo, zona (5 a 7) y periodo. Nov-dic 2004 y ene-oct 2005.

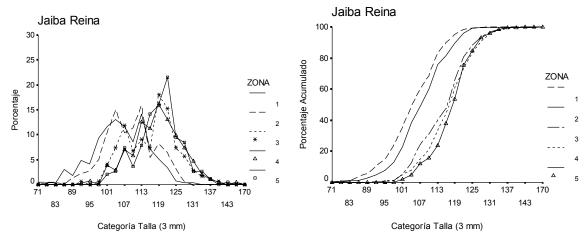


Figura 5. Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba marmola, por zona para el total y por sexo. Nov-dic 2004 y ene-oct 2005.

Figura 6. Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba reina, peluda y mora en la Zona de Ancud. Nov-dic 2004 y ene-oct 2005.

Figura 7. Estructura de tallas (ancho cefalotoráxico) del desembarque de jaiba reina, por zona. Nov-dic 2004 y ene-oct 2005.

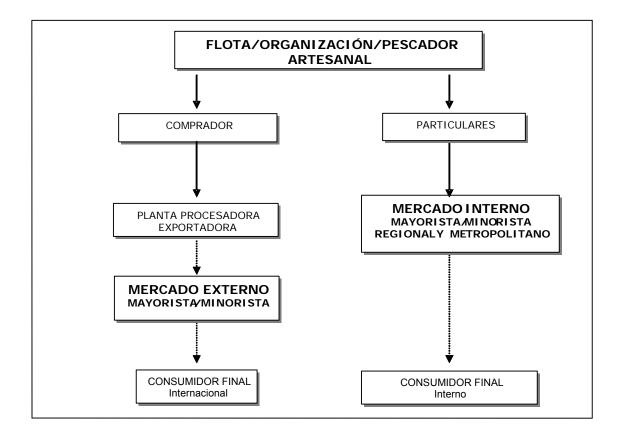


Figura 8. Canal de distribución de jaiba extraída en la X y XI Regiones.

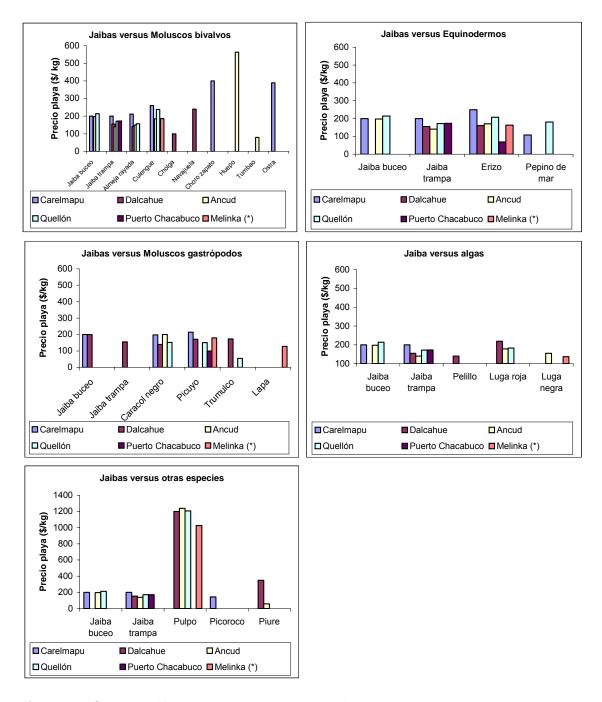


Figura 9. Comparación de los precios playa de jaibas versus otros grupos de recursos.

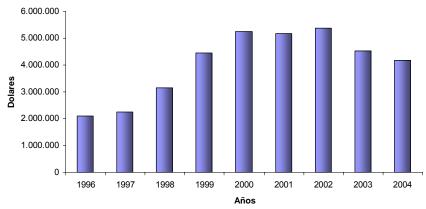


Figura 10. Valor de exportación chilena de jaibas. 1996-2004.

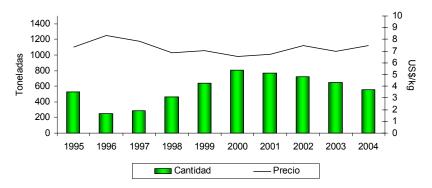
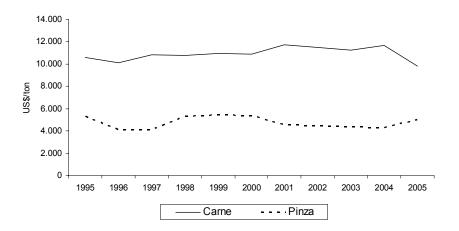



Figura 11. Cantidad y precio (FOB) de exportación chilena de jaiba

Figura 12. Precios FOB de jaiba en el formato carne y pinzas en el mercado de Estados Unidos.

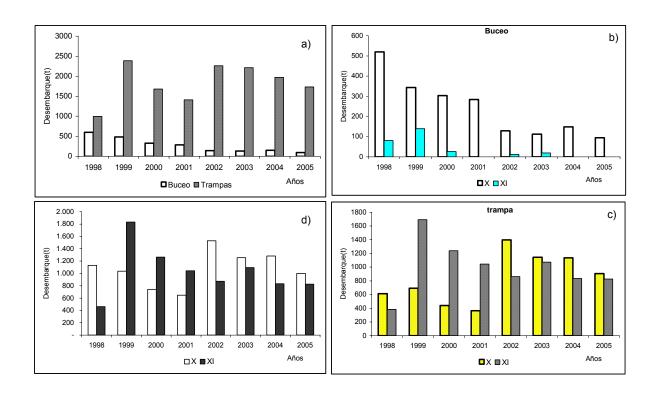


Figura 13. Desembarques anuales registrados por IFOP. a) por sistema de extracción, sin considerar región; b) obtenidos mediante buceo; c) obtenidos mediante trampa; d) por región sin considerar sistema de extracción.

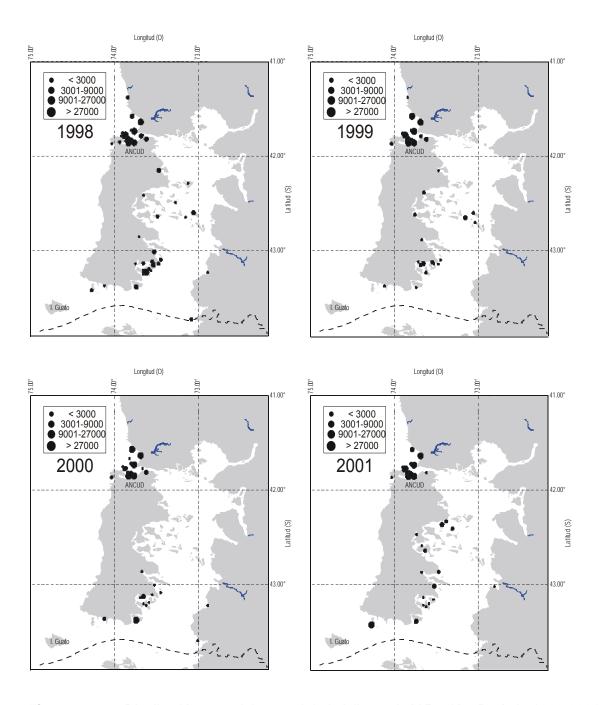
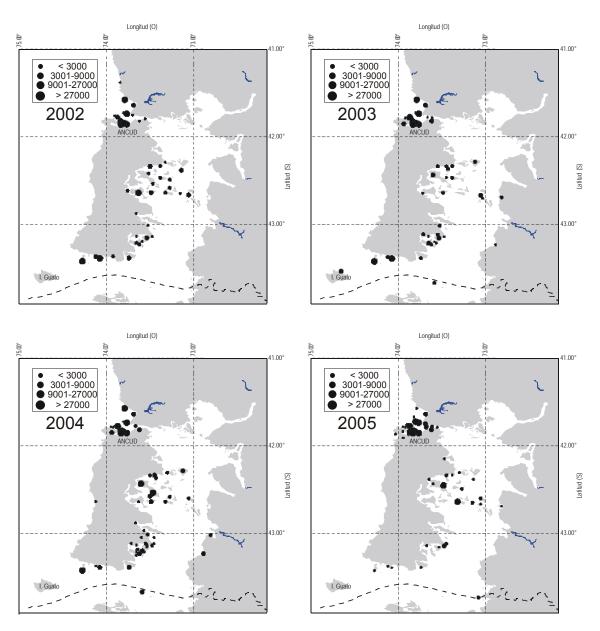
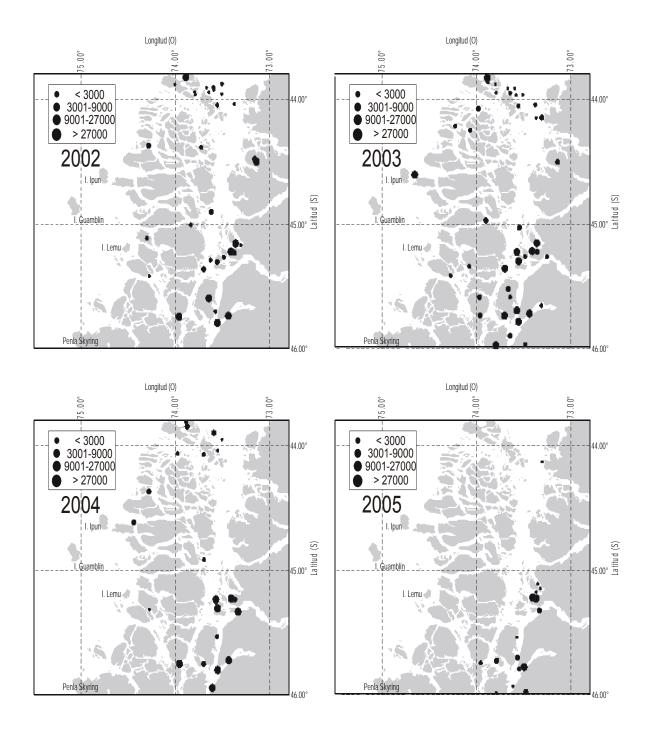
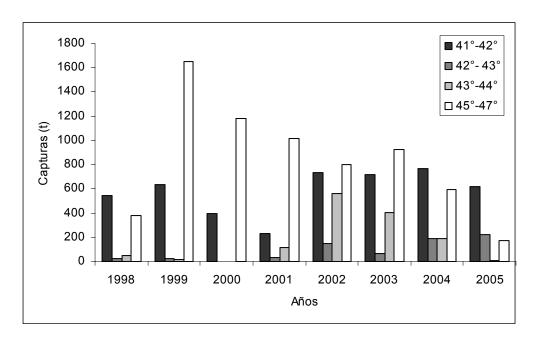
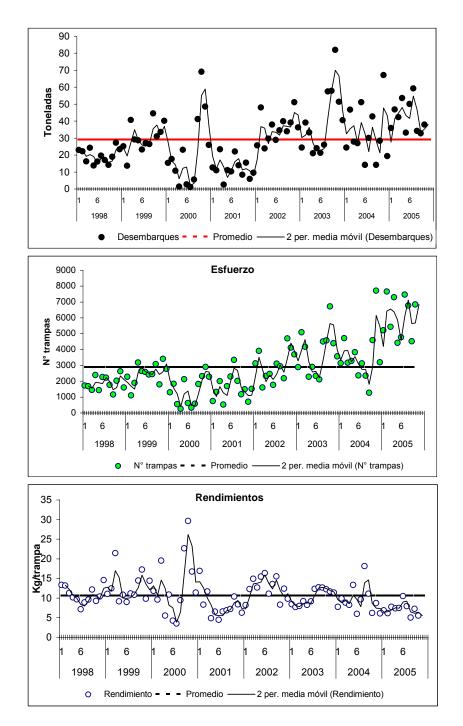
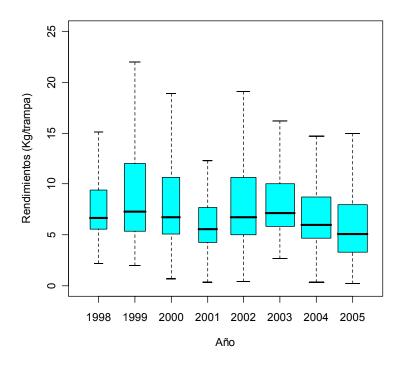




Figura 14. Distribución espacial y anual de la jaiba en la X Región. Período 1998-2001.


Figura 15. Distribución espacial y anual de la jaiba en la X Región. Período 2002-2005.


Figura 16. Distribución espacial y anual de la jaiba marmola en la XI Región. Período 1998-2001.


Figura 17. Distribución espacial y anual de la jaiba marmola en la XI Región. Período 2002-2005.


Figura 18. Distribución por zonas de pesca, agrupadas latitudinalmente. Período 2002-2005.

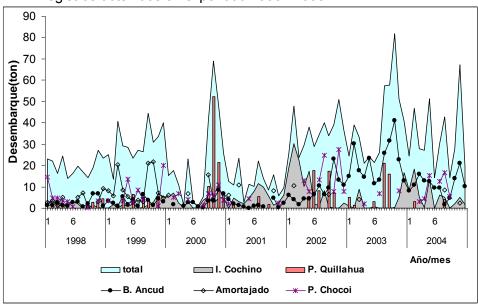


Figura 19. Evolución del desembarque, esfuerzo y rendimiento histórico de las naves que operaron por más de 6 años, en el periodo 1998 a 2005., en la X Región. a) Desembarques en toneladas b) Esfuerzo (N° trampas) y c) Rendimientos (Kg de jaibas desembarcada/trampa).

Figura 20. Boxplot de los rendimientos de pesca de jaibas (Kilos/ trampa), para los registros obtenidos en el periodo 1998 –2005.

Figura 21. Desembarque encuestado por mes y año, para las principales zonas de pesca y total, X Región.

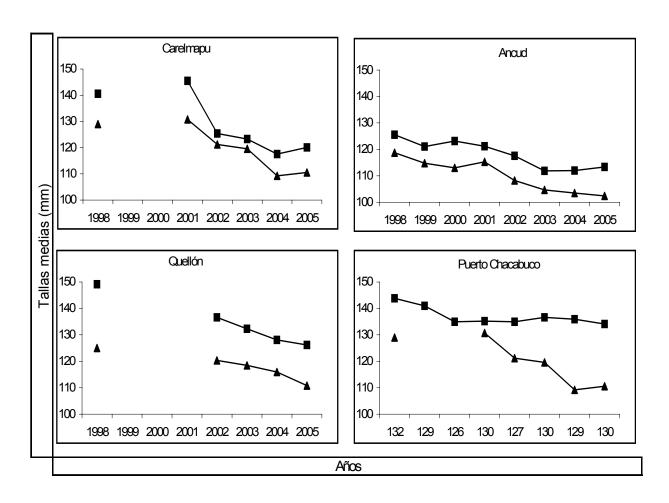


Figura 22. Tallas medias (mm) de jaiba marmola por sexo y puerto. 1998 – 2005. (■ machos y ▲ hembras)

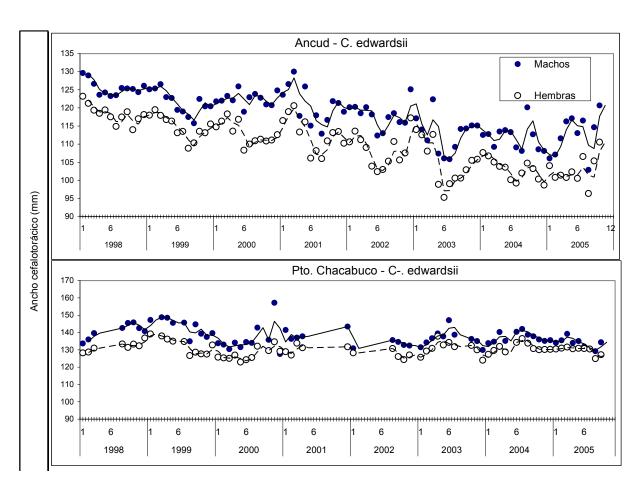


Figura 23. Tallas medias mensuales por sexo en los desembarques de jaibas, por especie y zona principal de pesca, periodo 1998 – 2005. Las líneas indican el promedio móvil (línea entera= macho; punteadas= hembras).

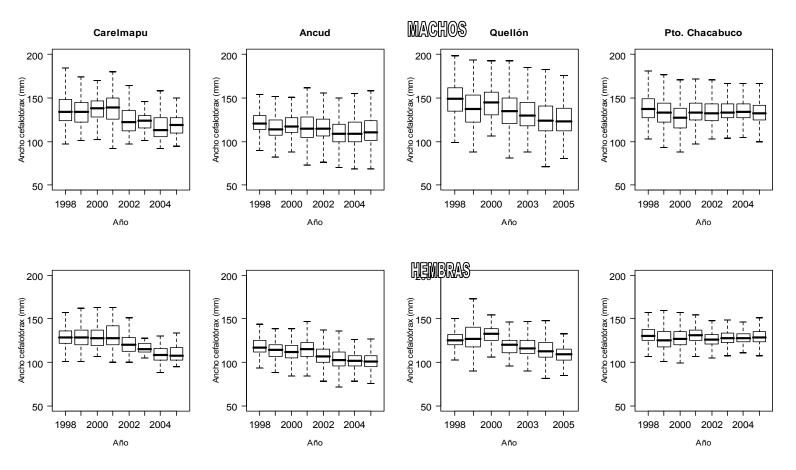
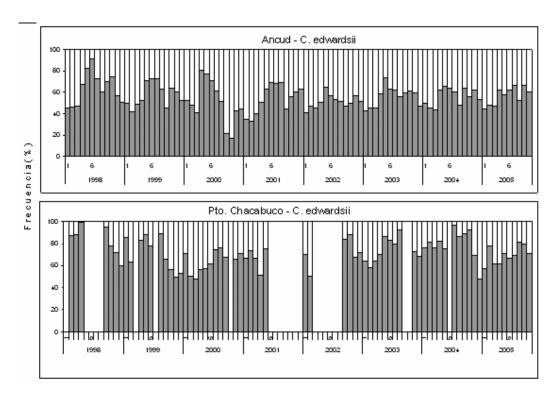
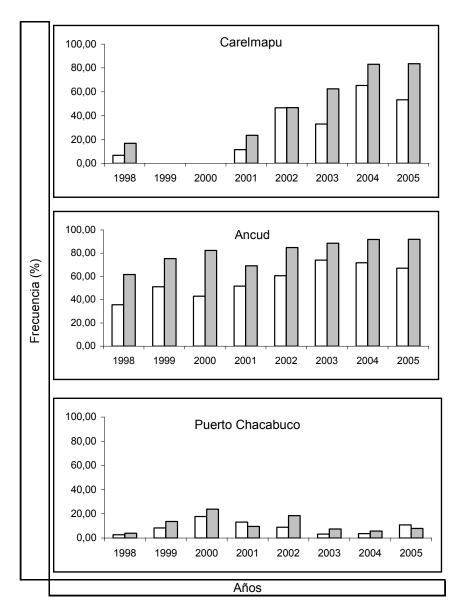




Figura 24. Gráficos Boxplot del ancho cefalotorácico (mm) de jaiba marmola, por puerto y sexo.

Figura 25. Proporción mensual de sexos (gris= machos; blanco= hembras) en los desembarques de jaibas, por especie y zona principal de pesca, periodo 1998 – 2005.

Figura 26. Porcentaje de jaiba marmola bajo talla mínima legal, observada por sexo y puerto entre los años 1998 y 2005. Machos (blanco) y hembras (gris).

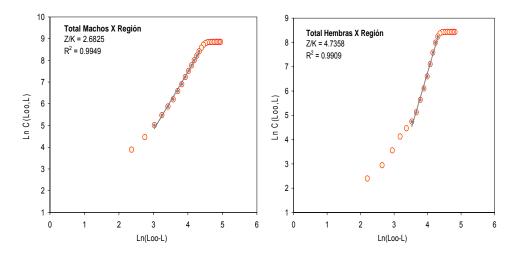
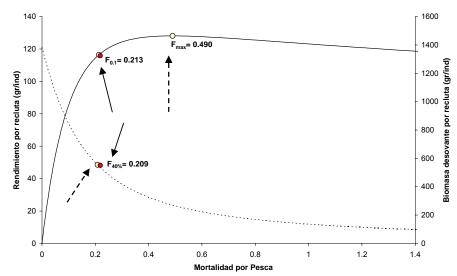
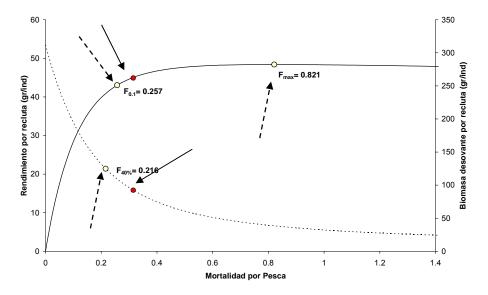




Figura 27. Estimación de la relación Z/K para jaiba marmola en la X Región

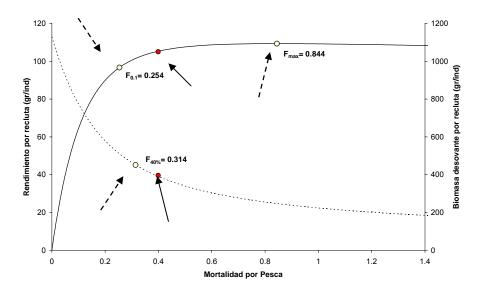


Figura 28. Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola macho en la X Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).

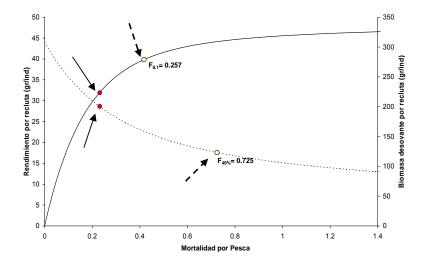


Figura 29. Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola hembras en X Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).

Figura 30. Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola macho en la XI Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).

Figura 31. Curvas de rendimiento y biomasa por recluta y mortalidad por pesca de referencia estimadas para jaiba marmola hembras en XI Región. Se indica los valores de F para cada PBR (flecha segmentada) y el nivel de mortalidad actual (flecha entera).

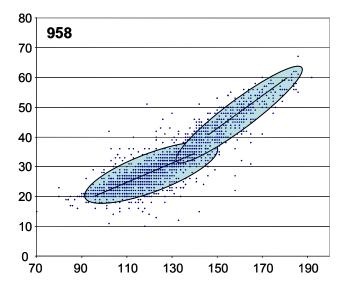
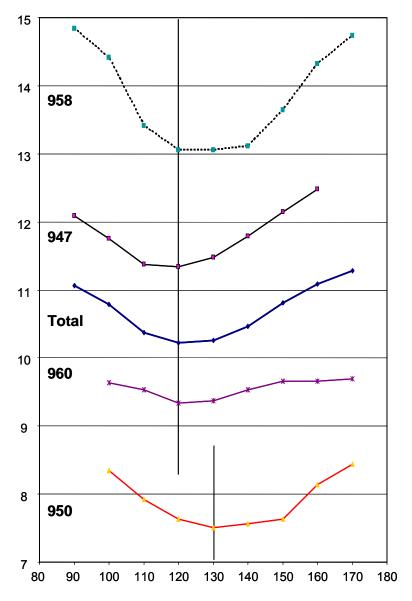



Figura 32. Relación talla–alto de quela observada en el puerto de Quellón (958). Jaiba marmola.

Figura 33. Sumas de cuadrados medios residuales conjuntas estimadas para jaiba marmola, por puerto y total. Quellón (958), Ancud (947), Puerto Chacabuco (960) y Dalcahue (950).

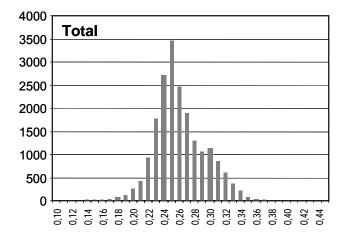


Figura 34. Distribución de los residuales para el total de datos de machos. Jaiba marmola.

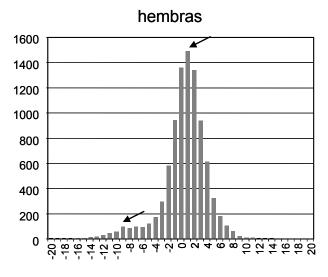


Figura 35. Distribución de los residuales para el total de datos de hembras. Jaiba marmola

FOTOGRAFÍAS

Foto 1. X Región. Tipo de embarcación que realiza faenas diarias en la extracción de jaibas mediante buceo. A) Ancud (de madera); B) Quellón (de madera); C) Piñihuil (de fibra de vidrio).

Foto 2.Embarcaciones utilizadas en las "faenas" de la XI Región para la extracción de jaibas.

Foto 3. Trampas utilizadas en la captura de jaibas. A la Izquierda se muestra la utilizada en la X Región. A la derecha la utilizada en la XI Región.

Foto 4. Pluma utilizada para el virado de la trampa en la X Región.

Foto 5. Proceso manual de virado de trampas en el sector de faenas en la XI Región.

Foto 6. ANCUD. Proceso de encarnadura en sistema de trampas. A) Llegada de carnada al muelle; B) Carnada utilizada (desechos de pescados); C) Recipientes donde es almacenada la carnada; D) Preparación de la carnada para ser puesta en las bolsas; E) Bolsas o "quiñes" donde se coloca la carnada; F) Revisión del lugar donde será puesta la bolsa con la carnada.

Foto 7.Embarcación que realiza faenas diarias en la extracción de jaibas. Sobre su cubierta se observan las trampas que utilizan para su captura.

Foto 8 Obtención de carnada en faenas de la XI Región: A) Banco de Mitilidos; B) Captura de peces mediante redes.

Foto 9. "Quiñes" o bolsas donde se coloca la carnada.

Foto 10. Apozamiento de las jaibas obtenidas durante el día (Izquierda), a la espera de ser retiradas por la embarcación de cabotaje (derecha).

Foto 11. Sitios donde "habitan" los extractores de jaibas en la XI Región.

Foto 12. Embarcación de cabotaje que se dedica al transporte del recurso jaiba desde las zonas de pesca hasta los puertos de desembarque.

TABLAS

Tabla 1Parámetros biológicos de jaiba marmola estimados para la zona de estudio

Parámetro	Macho	Hembra	Referencia
L _∞ (mm)	190,7	174,04	Pool et al., (1996)
K (año ⁻¹)	0,137	0,098	Pool et al., (1996)
M (año⁻¹)	0,149	0,149	Pool et al., (1996)
L50% (mm)		119,5	Pool et al., (1996)
L50% (mm)		97,8	Contreras (2000)

 L_{∞} , longitud asintótica; K, tasa de crecimiento individual; M, tasa de mortalidad natural; L50%, ancho cefalotoráxico donde el 50% de las hembras se encuentran maduras.

Tabla 2Número de pescadores inscritos (Fuente: Serna<u>pesca</u>) para operar sobre la pesquería de jaibas versus Número de pescadores efectivamente extrayendo el recurso (Fuente: Presente estudio*), X Región

Caleta	N° de pescadores según		Caleta	N° de pescadores según	
	Sernapesca	Datos IFOP		Sernapesca	Datos IFOP
Achao	75	0	Mar Brava	3	0
Amortajado	7	4	Maullin	320	0
Anahuac	71	0	Mehuin	120	0
Ancud	240	288	Nal	39	14
Auchac	8	16	Niebla	154	3
Bahia Mansa	313	16 (**)	Pargua	14	0
Carelmapu	284	43	Piñihuil	28	45
Caulin	31	0	Pucatrihue	5	0
Chaicas	54	0	Pudeto	175	2
Chinquihue	25	0	Pumillahue	7	15 (***)
Chonchi	68	32	Punta Arenas	24	0
Corral	100	6	Punta Chilen	17	0
Curanue	20	11	Queilen	122	0
Dalcahue	252	12	Quellon	1.242	65
El Manzano	29	0	Quemchi	89	8
Estaquillas	122	0	Quenuir	85	0
Faro Corona	17	0	Quetalmahue	27	0
La Pasada	11	0	Valdivia	206	0
Los Molinos	59	24	Total	1.786	436

^(*) Datos obtenidos en base a informantes claves (Dirigentes de Pescadores, Alcaldes de mar, Capitanías de Puerto).

^(**) Desembarcan en Mailcolpue

^(***) Desembarcan en Piñihuil

Tabla 3Número de pescadores que operaron sobre el recurso jaiba, encuestados en las faenas de la XI Región.

CALETA	N° Pescadores		
Puerto Chacabuco (*)	8		
Isla Ballico	4		
Grupo Canquenes	4		
Corriente La Vaca	12		
Punta Jaime	5		
Reinahuen	3		
Estero Yates	2		
Punta Pescadores	2		
Puerto Bonito	2		
Isla Costa	6		
Isla Chaculay	3		
Isla Vergara	3		
Isla Pilcomayo	10		
TOTAL	64		

^(*) Trabajan en lanchas de transporte

Tabla 4Número de buzos que operaron durante el periodo de estudio. X Región.

Mes	Centro	Centros de muestreo				
	Carelmapu	Ancud	Quellón			
Nov. 04	11	33	10			
Dic. 04		9				
Ene. 05	8	12				
Feb. 05		13				
Mar. 05		49				
Abr. 05		52				
May. 05		36				
Jun. 05		53				
Jul. 05		54	5			
Ago. 05		52	15			
Sep. 05		48				
Oct. 05		42				

Tabla 5

Número de embarcaciones inscritas (Fuente: Serna<u>pesca</u>) para operar sobre la pesquería de jaibas versus Número de embarcaciones efectivamente extrayendo el recurso (Fuente: Presente estudio*), X Región

Caleta	N° de embar	caciones según	Caleta	N° de embarcaciones seg		
	Sernapesca	Datos IFOP		Sernapesca	Datos IFOP	
Achao	26	0	Mar Brava	2	0	
Amortajado	2	2	Maullin	72	0	
Anahuac	49	0	Mehuin	27	0	
Ancud	88	89	Nal	8	7	
Auchac	6	4	Niebla	46	1	
Bahia Mansa	22	4 (**)	Pargua	8	0	
Carelmapu	71	15	Piñihuil	12	18	
Caulin	18	0	Pucatrihue	4	0	
Chaicas	27	0	Pudeto	43	1	
Chinquihue	5	0	Pumillahue	4	4 (***)	
Chonchi	21	8	Punta Arenas	8	0	
Corral	28	2	Punta Chilen	5	0	
Curanue	18	7	Queilen	42	0	
Dalcahue	97	3	Quellon	371	25	
El Manzano	40	0	Quemchi	28	8	
Estaquillas	42	0	Quenuir	11	0	
Faro Corona	7	0	Quetalmahue	14	0	
La Pasada	6	0	Valdivia	58	0	
Los Molinos	18	8	Total	591	138	

^(*) Datos obtenidos en base a informantes claves (Dirigentes de Pescadores, Alcaldes de mar, Capitanías de Puerto).

^(**) Desembarcan en Mailcolpue

^(***) Desembarcan en Piñihuil

Tabla 6Número de embarcaciones que operaron sobre los recursos jaibas y que fueron encuestadas en las faenas de la XI Región.

CALETA	N° embarcaciones
Puerto Chacabuco (*)	2
Isla Ballico	2
Grupo Canquenes	2
Corriente La Vaca	4
Punta Jaime	3
Reinahuen	2
Estero Yates	1
Punta Pescadores	1
Puerto Bonito	1
Isla Costa	3
Isla Chaculay	1
Isla Vergara	1
Isla Pilcomayo	5
TOTAL	28

^(*) Trabajan como lanchas de transporte

Tabla 7

Número de embarcaciones (buceo=B; trampas=T) registrada mensualmente durante el periodo de estudio en ambas regiones.

Región	Centro de muestreo	Nov-04		Dic-04		Ene-05		Feb-05		Mar-05		Abı	r-05
		В	Т	В	Т	В	Т	В	Т	В	Т	В	Т
10	Carelmapu	9											
10	Dalcahue		3		3		3		3		3		3
10	Ancud	21		7		8		7		29		23	
10	Quellón	5	5		3				4		3		1
11	Puerto Chacabuco		2		2		1		1		1		8

Región	Centro de muestreo	May-05		Jun-05		Jul-05		Ago-05		Sep-05		Oct	t-05
		В	Т	В	Т	В	Т	В	Т	В	Т	В	Т
10	Carelmapu												
10	Dalcahue		3		2		2		2		2		2
10	Ancud	18		22		27		27		23		20	
10	Quellón				1	2	1	8	1				
11	Puerto Chacabuco		2		2		2		2		2		14

Tabla 8Rango de eslora de las embarcaciones extractoras de jaibas en la X y XI Regiones

Región	Puerto							Ran	go de	Eslora	a (m)						
		< 3	a 6	6,0-	- 7,0	7,1	- 8,0		- 9,0			10,1	- 12,0	12,1	- 13,0	13,1	- 14,0
		1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
Х	Carelmapu					1		5		3	2		1				1
X	Ancud			11		15		8		15		12			4		5
X	Dalcahue												1				2
Х	Quellón							4					6				
Total				11		16		17		18	2	12	8		4		8
ΧI	Puerto Chacabuco (*)																2
ΧI	Isla Ballico				1				1								
ΧI	Grupo Canquenes		1		1												
ΧI	Corriente La Vaca				3				1								
ΧI	Punta Jaime		2										1				
XI	Reinahuen				2												
ΧI	Estero Yates				1												
ΧI	Punta Pescadores						1										
ΧI	Puerto Bonito				1												
ΧI	Isla Costa		1		1				1								
ΧI	Isla Chaculay								1								
XI	Isla Vergara				1												
XI	Isla Pilcomayo		1				2		1				1				
Total	•		5		11		3		5				2				2

^(*) Sólo realizan labores de acarreo

Tabla 9Rango de potencia de las embarcaciones extractoras de jaibas en la X y XI Regiones

Región	Puerto			R	ango de pot	encia de mot	or (Hp)		
_		10 - 20	21 - 40	41 - 70	71 - 100	101 - 120	121 - 140	141 - 160	161 - 180
Χ	Carelmapu	7	3	1	2				
Χ	Ancud	9	28	15	9			8	1
Χ	Dalcahue				2			1	
Χ	Quellón	2		2	6				
Total		18	31	18	19	0	0	9	1
ΧI	Puerto Chacabuco (*)								2
ΧI	Isla Ballico	2							
ΧI	Grupo Canquenes	1	1						
ΧI	Corriente La Vaca	3	1						
ΧI	Punta Jaime	2		1					
ΧI	Reinahuen	2							
ΧI	Estero Yates	1							
ΧI	Punta Pescadores	1							
ΧI	Puerto Bonito	1							
ΧI	Isla Costa	2			1				
ΧI	Isla Chaculay	1							
ΧI	Isla Vergara	1							
ΧI	Isla Pilcomayo	2	2		1				
Total		19	4	1	2	0	0	0	2

Tabla 10Marcas de motores usados por las embarcaciones extractoras de jaibas en la X y XI Regiones

Marca de Motor	Embar	caciones		Tipo de motor	
	N	%	Interno	F. de borda	Adaptado
Amstrong	3	2,3	3		
Chino	2	1,6	2		
Duncan	1	0,8	1		
Evinrude	11	8,6		11	
Ford	3	2,3	3		
Isuzu	1	0,8		1	
Yamaha	13	10,2	2	11	
Jhonson	9	7,0		9	
John Deere	2	1,6	2		
Kohler	17	13,3	16	1	
Lister	9	7,0	9		
Magirus Deutz	2	1,6	2		
Mercedes Benz	22	17,2	22		
Bwm	2	1,6	2		
Nissan	2	1,6	1		1
Perkins	1	0,8	1		
Peter Amstrong	1	0,8	1		
Suzuki	14	10,9		14	
Toyota	1	0,8	1		
Mariner	2	1,6		2	
Honda	3	2,3	3		
Yanmar	7	5,5	2		
Total	128	100	73	49	1

Tabla 11Rangos de volumen del acumulador y capacidad de los compresores.

a. Rango de volúmen del acumulador.

a. Range de volamen del dedinaldon.													
Puerto		Rango de Volúmen del Acumulador (litros)											
	30 - 50	51 - 80	81 - 100	101 - 130	131 - 150	151 - 180	181 - 200	201 - 250					
Carelmapu			1	2	3	1							
Ancud	5	14	9	11		4	4	1					
Dalcahue													
Quellon													
Total	5	14	10	13	3	5	4	1					

b. Rango de capacidad del compresor.

Puerto		Rango de Capacidad del Compresor (libras)											
	71 - 90	91 - 100	101 - 130	131 - 150	151 - 180	181 - 200	201 - 250	251 - 300					
Carelmapu			2	2	1	2		1					
Ancud	3	3	12	20	6	5	1						
Dalcahue													
Quellon			4	2									
Total	3	3	18	24	7	7	1	1					

Tabla 12Georeferenciación de las procedencias explotadas por la flota buceadora y trampera, asociada a los puertos de la X Región.

a. Carelmapu								
Procedencia	Región	Ubicación			e explotada			
	L	Latitud S.	Longitud W.	J. reina	J. peluda	J. mora	J. patuda	J. marmola
Canal Chacao	Х	41° 47' 18"	73° 41' 07"		В	В		В
Punta Chocoi	Х	41° 44' 23"	73° 46' 00"		ВТ	ВТ		ВТ
Punta Lenqui	Х	41° 45' 11"	73° 41' 35"	<u> </u>	Т	Т		Т
b. Ancud								
Punta Quillahua	Х	41° 34' 48"	73° 47' 45"		T	T		Т
Amortajado	Х	41° 38' 34"	73° 41' 37"	Т	Т	Т		Т
Farallones	Х	41° 40' 35"	73° 49' 40"	[В	1]	В
Isla Sebastiana	Х	41° 43' 53"	73° 48' 24"	ļ	В	1	[В
Punta Chocoi	Х	41° 44' 23"	73° 46' 00"	Т	Т	Т		Т
Carelmapu	Х	41° 45' 02"	73° 42' 11"	ļ I	В	l		В
Punta Lenqui	Х	41° 45' 11"	73° 41' 35"	ļ I	Т	l	Т	Т
La Horca	X	41° 45' 52"	73° 54' 21"	ļ I	В	l		В
Punta Corona	Х	41° 46' 53"	73° 52' 30"	Т	ВТ	Т	ВТ	ВТ
Carbonero	Х	41° 46' 59"	73° 40' 00"	Į l	В	l	В	В
Guabun	X	41° 47' 00"	73° 57' 00"	[В	l		В
Playa Chauman	X	41° 47' 17"	73° 55' 30"	ļ I	В	l	В	В
Punta Yuste	X	41° 47' 55"	73° 53' 37"	ļ I	В	l	В	В
Canal Caulin	Х	41° 49' 10"	73° 37' 31"	Т	ВТ	l		ВТ
Ahui	Х	41° 49' 50"	73° 50' 31"	Т	ВТ	BT	BT	ВТ
Nal	X	41° 50' 10"	73° 57' 00"	[Т	l		Т
Isla Cochino	X	41° 50' 50"	73° 48' 27"	ВТ	ВТ	ВТ	BT	ВТ
Punta Chaicura	Х	41° 50' 53"	73° 52' 06"	[В	l	В	В
Golfo Quetalmahue	Х	41° 51' 06"	73° 56' 38"	Т	Т	Т		Т
Mutrico	Х	41° 51' 37"	73° 46' 07"	ВТ	ВТ	BT	BT	ВТ
Bahia Ancud	Х	41° 51' 56"	73° 50' 04"	Т	ВТ	ВТ	ВТ	ВТ
Punta Arena	X	41° 52' 00"	73° 53' 00"	Т	T			Т
c. Dalcahue								
Islas Chauques	X	42° 17' 22"	73° 07' 39"	[]		!]	T
Isla Mechuque	X	42° 18' 43"	73° 18' 16"	Т		l		T
Punta Tenaun	X	42° 20' 07"	73° 23' 04"	ļ İ		l		T
Quetalco	X	42° 20' 29"	73° 33' 04"	[l		T T
Calen	X	42° 20' 30"	73° 27' 00"	ļ I	Т	l		T T
Puerto San Juan	X	42° 20' 39"	73° 30' 06"	ļ I		l		T T
Isla Lin-Lin	X	42° 22' 00"	73° 26' 00"	Į l		l		T
Huyar	X	42° 23' 30"	73° 34' 00"	_		l		T
Curaco De Velez	X	42° 26' 16"	73° 36' 35"	Т		l		T
Achao	X	42° 27' 30"	73° 29' 00"	ļ İ		l		T
Rilan	X	42° 32' 30"	73° 28' 00"	ļ İ		l		T
Isla Chelin	X	42° 34' 59"	73° 30' 00"	Į l		l		T
Isla Lemuy	X	42° 38' 54"	730 38' 04"	[l		T
Ahoni	Х	42° 45' 00"	73° 33' 00"			l		Т
B. Quellón		400 071	700 401					
Chonchi	X	42° 37' 36"	730 46' 57"	T		Т		T
Queilen	X	42° 53' 29"	73° 28' 54"	Т		Į.		T
San Juan de Chadmo	X	42° 58' 12"	73° 34' 21"	ļ İ		Į.		T
Chilcol	X	43° 07' 20"	73° 27' 30"	_		ļ		T
Curanue	X	43° 08' 00"	73° 56' 00"	T	_	۰ ـ		T
Quellon Viejo	X	43° 08' 28"	73° 39' 42"	Т	В	Т		BT
San Antonio	X	43° 08' 30"	730 32' 00"	ļ I	В	ļ		BT
Barra Chiguao	X	43° 08' 59"	73° 28' 59"	ļ I	В	ļ		BT T
Isla Cailin	X	43° 09' 49"	730 32' 27"	ļ İ		Į.		T
Canal Yelcho	X	43° 12' 07"	730 35' 38"	Į l	В	Į		BT
El Pinto	X	43° 13' 00"	730 34' 00"	_	В	Į		B
Isla Coldita	X	43° 13' 07"	730 39' 36"	T	_	ļ		T
Isla Laitec	X	43° 14' 02"	73° 37' 42"	Т	В	ļ		BT T
Isla San Pedro	X	43° 23' 42"	73° 44' 54"	ļ I	ا ب	ļ		T
Isla Yencouma	X	43° 23' 59"	740 04' 59"	_	Т	Į.		T
Isla Guapiquilan	X	43° 25' 59"	740 16' 59"	T		Į		T
Isla Tellez	XI XI	44° 13' 00" 45° 40' 00"	74° 11' 00" 73° 40' 00"	Т		ļ		T T
Isla Traiguen				[ļ		T
Bahía Anna Pink	ΧI	45° 47' 00"	74° 50' 00"					1

Tabla 13 Georeferenciación de las procedencias explotadas por la flota trampera, asociadas a los puertos de la XI Región.

Procedencia	Región	Ubicación geográfica						Esp. explotada		
i roccuciicia	Region	1.5	atitud			ngitud	۱۸/	J. marmola		
Punta Tiques	ΧI	43°	21'	00"	740	10'	00"	T		
Canal Cuchi	XI	43°	52'	00"	73°	45'	00"	T T		
Canal Leucayec	XI	43°	58'	00"	73°	41'	00"	İ		
Punta Gansos	XI	44°	40	05'	73°	45'	00"	Ť		
Corriente La Vaca	XI	440	04'	00"	74°	02'	59"	İ		
Puerto Ballenas	XI	440	08'	26"	73°	28'	17"	İ		
Roca Negra	XI	440	10'	00"	73°	21'	00"	İ		
Garzas	XI	44°	40'	05'	73°	45'	00"	l †		
Isla Inca	XI	45°	40 07'	00"	73°	43 31'	00"	l †		
Isla Yañez	XI	45°	10'	00"	73°	28'	00"	l †		
	XI	45°	11'	00"	73°	26 32'	30"	l ¦		
Isla Vergara	XI	45°	08'	00"	73°	38'	00"	†		
Grupo Las Ratas	XI	45°	06 13'	59"	73°	36'		T T		
Isla Costa (*)		-			-	-	00"			
Isla El Gallo (*)	ΧI	45° 45°	13'	59"	73°	34'	00"	T		
Isla Chaculay	ΧI		14'	00"	73°	31'	00"	T		
Isla Meninea	ΧI	45°	14'	00"	73°	36'	00"	T		
Puerto Lagunas	ΧI	45°	14'	00"	73°	43'	00"	T		
Canal Pilcomayo	ΧI	45°	14'	14"	73°	32'	00"	T -		
Playas Largas	ΧI	45°	15'	00"	73°	43'	00"	T _		
Punta Ester	ΧI	45°	16'	00"	73°	26'	02"	<u>T</u>		
Caleta Vidal	ΧI	45°	16'	30"	73°	25'	30"	T		
Caleta Sepulcro	ΧI	45°	17'	20"	73°	44'	10"	Т		
Isla Castillo	ΧI	45°	18'	44"	73°	42'	02"	Т		
Canal Rodriguez	ΧI	45°	19'	00"	73°	32'	00"	Т		
Islote Santa Maria	ΧI	45°	19'	40"	73°	41'	00"	Т		
Isla Churrecue	ΧI	45°	20'	00"	73°	30'	00"	Т		
Isla Renaico	ΧI	45°	26'	00"	73°	38'	00"	Т		
Ensenada Rallay	ΧI	45°	27'	00"	72°	48'	00"	T		
Canal Costa	ΧI	45°	30'	00"	73°	32'	00"	T		
Canal Errazuriz	ΧI	45°	32'	00"	73°	48'	00"	T		
Isla Ballico	ΧI	45°	33'	00"	73°	47'	00"	T		
Las Mentas	ΧI	45°	36'	30"	73°	47'	10"	Т		
Isla Traiguen	ΧI	45°	40'	00"	73°	40'	00"	Т		
Isla Rojas	ΧI	45°	42'	30'	73°	43'	00"	Т		
Conchillas	ΧI	45°	43'	00"	73°	45'	00"	Т		
Reinahuen	ΧI	45°	43'	00"	73°	43'	00"	Т		
Canal Chacabuco	ΧI	45°	44'	00"	73°	55'	20"	T		
Grupo Caiquenes	ΧI	45°	45'	00"	74°	04"	59	Т		
San Miguel	ΧI	45°	45'	04"	73°	34'	30"	Т		
Grupo Los Mogotes	ΧI	45°	50'	30"	73°	40'	00"	Т		
Canal Carrera del Cuchi	ΧI	45°	52'	00"	73°	45'	00"	Т		
Islas Yates	ΧI	45°	52'	00"	73°	39'	00"	Т		
Puerto Bonito	ΧI	45°	55'	00"	73º	35'	00"	Ť		
Isla Simpson	ΧI	45°	58'	00"	73º	50'	00"	Ť		
Punta Pescadores	ΧI	45°	59'	30"	73º	38'	00"	Ť		
Estero Barros Arana	ΧI	46°	00'	00"	73°	56'	00"	T		
Canal Liucura	ΧI	46°	01'	30"	73º	45'	00"	T T		
Estero Elefante	XI	46°	10'	00"	73°	39'	00"	Ť		

T : Especie explotada mediante trampas

(*) : Isla el gallo ubicada al lado de Isla Costas

Tabla 14Principales áreas de pesca de jaiba, por puerto, seleccionadas en base al criterio nivel de desembarque y N° de viajes.

Puerto	Procedencia	Desembarque (kg)	%	Procedencia	N° Viajes	%
Carelmapu	Punta Chocoi	20.313	89,9	Punta Chocoi	36	76,6
	otras 2	2.279		otras 2	11	23,4
	Total	22.592	100,0	Total	47	100,0
Ancud	Bahia Ancud	314.303	38,9	Bahia Ancud	1022	39,2
	Isla Cochino	163.097	20,2	Isla Cochino	633	24,3
	Otras 20	331.517		Otras 20	951	36,5
	Total	808.917	100,0	Total	2606	100,0
Dalcahue	Rilan	126.523	32,5	Rilan	37	33,9
	Curaco De Velez	116.116	29,9	Curaco De Velez	28	25,7
	Otras 11	146.073		Otras 11	44	40,4
	Total	388.712			109	100,0
Quellón	Isla Traiguen	35.800	55,0	Isla Laitec	9	19,1
	Encolma	12.500	19,2	El Pinto	7	14,9
	Otras 12	16.766	25,8	Canal Yelcho	6	12,8
				Encolma	4	8,5
				Otras 10	21	44,7
	Total	65.066	100,0	Total	47	100,0
Pto. Chacabuco	Isla Costas	87.375	9,1	Isla Costas	20	12,0
	Pilcomayo	67.660	7,0	Corriente La Vaca	15	9,0
	Area 204	46.374	4,8	Pilcomayo	10	6,0
	Area 203	35.773	3,7	Isla Chaculay	7	4,2
	Area 212	34.975	3,6	Grupo Las Ratas	6	3,6
	Grupo Los Mogotes	31.021	3,2	Barros Arana	4	2,4
	Isla Castillo	30.897		Islas Canquenes	4	2,4
	Corriente La Vaca	30.642	3,2	Isla Castillo	4	2,4
	Area 207	28.716	3,0	Area 200	4	2,4
	Area 198	28.312	2,9	Area 203	4	2,4
	Canal Chacabuco	28.278	2,9	Area 204	4	2,4
	Area 216	23.606	2,5	Punta Pescadores	3	1,8
	Area 229	23.413	2,4			0,0
	Otras 50	463.289		Otras 51	81	48,8
	Total	960.331	100,0	Total	166	100,0

Tabla 15
Principales áreas de pesca de jaiba, por puerto, seleccionadas en base al criterio de número de embarcaciones.

Puerto	Procedencia	N° Embarc.	Puerto	Procedencia	N° Embarc.
Carelmapu		12	Puerto	Isla Costas	4
	Canal Chacao	4	Chacabuco	Islas Canquenes	4
	Punta Lenqui	2		Corriente La Vaca	3
Total	·	15		Pilcom ayo	3
Ancud	Isla Cochino	51		Area 198	2
	Mutrico	50		Area 201	2
	Bahia Ancud	46		Area 206	2
	Ahui	36		Area 207	2
	Punta Yuste	17		canal chacabuco	2
	Punta Corona	13		Isla Castillo	2
	Carbonero	9		Isla Chaculay	2
	Amortajado	8		Isla Vergara	2
	Golfo Quetalmahue	7		Isla Yates	2
	Punta Chocoi	5		Punta Pescadores	2
	Isla Sebastiana	4		Area 190	1
	Punta Arena	3		Area 191	1
	Punta Quillahua	3		Area 192	1
	Canal Caulin	2		Area 193	1
	La Horca	2		Area 194	1
	Capilla	1		Area 195	1
	Farallones	l ;		Area 196	1
	Guabun			Area 197	1
	Nal				
		1		Area 199	1
	Playa Chauman	1		Area 200	1
	Punta Chaicura	1		Area 202	1
	Punta Lenqui	1		Area 203	1
Total		85		Area 204	1
Dalcahue	Curaco De Velez	3		Area 205	1
Daioanao	Rilan	3		Area 208	1
	Calen	2		Area 209	1
	Huyar	2		Area 210	1
	Isla Chelin	2		Area 211	1
	Isla Lemuy	2		Area 212	1
	Achao	1		Area 213	1
	Isla Lin-Lin	1		Area 214	1
	Isla Quehui	1		Area 215	1
	Islas Chauques	1		Area 216	1
	Puerto San Juan			Area 217	
					1
	Punta Tenaun	1		Area 218	1
	Quetalco	1		Area 219	1
Total		4		Area 220	1
Quellón	Isla Laitec	5		Area 221	1
	Canal Yelcho	4		Area 222	1
	El Pinto	4		Area 223	1
	Barra Chiguao	3		Area 224	1
	Encolma	3		Area 225	1
	Isla Coldita	3		Area 226	1
	Isla Guapiquilan	2		Area 227	1
	Isla Traiguen	2		Area 228	1
	Quellon Viejo	2		Area 229	1
	San Antonio	2		Area 230	1
	Chilcol	1		Barros Arana	1
	Isla Cailin			Caleta Vidal	1
					-
	Isla San Pedro	1		Grupo Las Ratas	1
	Isla Tellez	1		Grupo Los Mogotes	1
Total		26		Isla Ballico	1
				Isla Churrecue	1
				Isla Inca	1
				Isla Rojas	1
				Las Cochillas	1
				Puerto Bonito	1
				Punta Jaime	1
			Total	Urones	1 20

Tabla 16Desembarque en peso (kg) y Número de jaibas extraídas mediante buceo, distribuidos por puerto y mes.

Centro de	Carel	mapu	And	cud	Que	ellon	To	otal
Muestreo	(kg)	N°	(kg)	N°	(kg)	N°	General kg	General N°
Nov. 04	4.582	10.744	9.128	33.807	1.198	3.025	14.908	47.576
Dic. 04			1.799	10.837			1.799	10.837
Ene. 05	256	918	5.221	31.452			5.477	32.370
Feb. 05			6.023	24.584			6.023	24.584
Mar. 05			8.154	33.282			8.154	33.282
Abr. 05			12.785	42.056			12.785	42.056
May. 05			4.136	10.856			4.136	10.856
Jun. 05			6.321	16.084			6.321	16.084
Jul. 05			8.880	22.595	828	1.917	9.708	24.512
Ago. 05			10.819	33.704	1.451	4.166	12.270	37.870
Sep. 05			15.130	47.134			15.130	47.134
Oct. 05			14.121	31.876			14.121	31.876
Total	4.838	11.662	102.517	338.267	3.477	9.022	110.832	358.951

Tabla 17Desembarque en peso (kg) de las distintas especies de jaibas extraídas mediante buceo.

Mes			Carelma	ipu				An	cud					Quelló	n		Total
	J.marmola	J. peluda	J.mora	J. indeterminada	Total	J.marmola	J. peluda	J.mora	J.reina	. indeterminad	Total	J.marmola	J. peluda	J.reina	J. indeterminada	Total	General
Nov. 04	2.619	1.963	0		4.582					9.128	9.128	531			667	1.198	14.908
Dic. 04										1.799	1.799						1.799
Ene. 05				256	256	1.149	3.863	133	16	60	5.221						5.477
Feb. 05						1.499	3.963	273	13	276	6.023						6.023
Mar. 05						2.168	4.937	568	13	467	8.154						8.154
Abr. 05						3.704	6.646	1.022	18	1.395	12.785						12.785
May. 05						576	2.043	328		1.189	4.136						4.136
Jun. 05						404	1.576	59		4.283	6.321						6.321
Jul. 05						12	336	90		8.442	8.880	393	435			828	9.708
Ago. 05						279		241		10.299	10.819	357	12	2	1.080	1.451	12.270
Sep. 05						2.935	9.921	454		1.820	15.130						15.130
Oct. 05						6.846	2.131	393		4.751	14.121						14.121
Total	2.619	1.963	0	256	4.838	19.572	35.414	3.561	60	43.909	102.517	1.281	447	2	1.747	3.477	110.832
% (*)	54	41	0	5	100	19	35	3	0	43	100	37	13	0	50	100	1

Notación: %(*) Porcentaje determinado en relación al total del puerto asociado

Tabla 18

Desembarque en peso (kg) de jaibas extraídas mediante buceo, distribuidos por puerto, procedencia, especie y mes.

A. CARELMAPU

A. OAKELMAI O														
Procedencia	Recurso	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05	Total
Punta Chocoi	Jaiba marmola	2.619												2.619
	Jaiba peluda	1.963												1.963
	Jaiba mora	*												*
	Total	4.582												4.582
Canal Chacao	Jaiba indeterm inada			256										256
TOTAL	•	4.582		256										4.838

(*) Corresponde al desembarque de 1 ejemplar

B. ANCUD

Procedencia	Recurso	Nov-04	Dic-04	Ene-05		Mar-05	Abr-05	May-05	Jun-05			Sep-05	Oct-05	Total
Ahui	Jaiba marmola			13		29	39		8	12	279	495	455	1.362
	Jaiba peluda			110	270	249	337		219	336				1.520
	Jaiba mora			60	149	137	185		59	90	241	428	393	1.742
	Jaiba indeterm inada	1.131						10						1.141
	Total	1.131		183	450	415	561	10	286	438	520	923	848	5.765
Mutrico	Jaiba marmola			623	1.070	1.483	1.800	288					6.392	11.655
	Jaiba peluda			834	1.432	1.985	2.410	863				8.535	2.131	18.190
	Jaiba mora			73	125	173	210							579
	Jaiba indeterm inada	4.807	958						2.000	3.132	5.506			16.403
	Total	4.807	958	1.530	2.627	3.641	4.420	1.150	2.000	3.132	5.506	8.535	8.522	46.828
Bahia Ancud	Jaiba peluda					318	773							1.091
	Jaiba mora					259	627							886
	Jaiba indeterminada	92						492	1.152	986	460	244	380	3.806
	Total	92				577	1.400	492	1.152	986	460	244	380	5.783
Isla Cochino	Jaiba marmola			513		419	550	289	396			2.315		4.878
	Jaiba peluda			2.919	2.260	2.385	3.127	1.181	1.356			722		13.949
	Jaiba reina			16	13	13	18							60
	Jaiba mora							328				26		354
	Jaiba indeterminada	2.562	841							3.063	2.468		3.241	12.175
	Total	2.562	841	3.448	2.670	2.817	3.694	1.797	1.752	3.063	2.468	3.063	3.241	31.416
Punta Yuste	Jaiba marmola					237	1.315					125		1.677
	Jaiba peluda											664		664
	Jaiba indeterminada							205	75	726	911		583	2.500
	Total					237	1.315	205	75	726	911	789	583	4.841
Isla Sebastiana	Jaiba indeterm inada					467	616	108	356	177	391			2.115
Punta Corona	Jaiba indeterm inada			60			33	45	20					158
Carbonero	Jaiba indeterminada	536			158		746	29	250	300	523	1.576	547	4.665
La Horca	Jaiba indeterm inada				80									80
Canal Caulin	Jaiba indeterm inada				38									38
Punta Chaicura	Jaiba indeterminada									58				58
Playa Chauman	Jaiba indeterm inada								400					400
Farallones	Jaiba indeterm inada										40			40
Guabun	Jaiba indeterm inada								30					30
Punta Chocoi	Jaiba indeterm inada							300						300
TOTAL		9.128	1.799	5.221	6.023	8.154	12.785	4.136	6.321	8.880	10.819	15.130	14.121	102.517

C. QUELLON

Procedencia	Recurso	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05	Total
Barra Chiguao	Jaiba marmola	81												
	Jaiba indeterminada										870			870
	Total	81									870			951
El Pinto	Jaiba indeterminada										10			10
	Jaiba marmola	450								118				568
	Total	450								118	10			578
Isla Laitec	Jaiba indeterminada	633									200			833
	Jaiba marmola									30				30
	Total	633								30	200			863
San Antonio	Jaiba indeterminada	34												34
	Total	34												34
Canal Yelcho	Jaiba marmola									245	220			465
	Jaiba peluda									435				435
	Total									680	220			900
Quellón Viejo	Jaiba marmola										137			137
	Jaiba peluda										12			12
	Jaiba reina										2			2
	Total										150			150
TOTAL GENERA	L	1.198								828	1.451			3.476

Tabla 19Desembarque en peso (kg) y Número de jaibas extraídas mediante trampas, distribuidos por puerto y mes.

Centro de	Carel	mapu	Ar	ncud	Dalo	cahue	Que	ellon	Puerto Cl	nacabuco	To	tal
Muestreo	(kg)	N°	(kg)	N°	(kg)	N°	(kg)	N°	(kg)	N°	(kg)	N°
Nov. 04			71.264	273.993	61.539	229.623	35.300	109.572	183.987	425.405	352.090	1.038.593
Dic. 04			28.047	80.705	42.030	161.654	7.400	21.352	126.455	278.692	203.932	542.403
Ene. 05	7.489	36.892	61.286	322.139	29.650	104.401		0	25.225	76.440	123.650	539.872
Feb. 05			72.106	347.201	32.015	113.528	14.300	40.816	76.948	181.482	195.369	683.027
Mar. 05			33.730	187.710	53.490	174.235	2.950	4.693	75.767	174.177	165.937	540.815
Abr. 05	3.500	15.487	77.730	344.096	18.752	63.138	400	0	82.523	175.609	182.904	598.330
May. 05			45.510	149.747	26.736	89.718		0	96.273	227.059	168.519	466.524
Jun. 05			53.930	212.055	21.667	61.206	815	2.775	82.906	192.358	159.318	468.394
Jul. 05			50.265	188.916	39.893	117.334	800	2.241	74.382	182.756	165.340	491.247
Ago. 05			58.400	299.189	10.384	25.960	25	50	91.498	227.043	160.307	552.242
Sep. 05			44.260	191.982	31.801	73.956		0	100.316	261.922	176.377	527.860
Oct. 05	6.575	21.006	63.830	203.930				0	119.910	269.461	190.315	494.397
Total	17.564	73.385	660.358	2.801.664	367.958	1.214.753	61.990	181.499	1.136.191	2.672.404	2.244.060	6.943.704

Tabla 20Desembarque en peso (kg) de las distintas especies de jaibas extraídas mediante trampas.

Mes		Carelm	naou				,	Ancud		
	J. marmola	J. peluda	J. mora	Total	J. marmola	J. peluda	J. mora	J. reina	J. indeter.	Total
Nov. 04					43.780	3.009	2.024	198	22.252	71.264
Dic. 04					14.977	1.261		500	11.309	28.047
Ene. 05	4.765	2.326	397	7.489	38.445	1.148		15.036	6.656	61.286
Feb. 05					43.810	2.104		11.891	14.300	72.106
Mar. 05					33.145	509	75	0	0	33.730
Abr. 05	1.860	1.394	246	3.500	55.380	5.914	1.202	9.484	5.750	77.730
May. 05					33.501	2.879		2.180	6.950	45.510
Jun. 05					44.672	3.138		520	5.600	53.930
Jul. 05					40.911	4.050	520	1.545	3.240	50.266
Ago. 05					42.345	6.090	125	6.040	3.800	58.400
Sep. 05					38.639	1.805	45	1.700	2.070	44.260
Oct. 05	6.018	557	0	6.575	50.902	3.105	1.234	2.690	5.900	63.830
Total	12.643	4.278	643	17.564	480.507	35.014	5.225	51.786	87.827	660.358

Mes			Dalcahue	Э			Que	ellón		Pto. Chacabuco	Total
	J. marmola	J. peluda	J. reina	J. indeter.	Total	J. marmola	J. peluda	J. indeter.	Total	J. marmola	General
Nov. 04	51.950		6.955	2.634	61.539	30.312	488	4.500	35.300	183.987	168.103
Dic. 04	22.019		1.005	19.006	42.030	6.000		1.400	7.400	126.455	77.477
Ene. 05	26.815		2.835		29.650					25.225	98.425
Feb. 05	30.375		1.640		32.015	10.000		4.300	14.300	76.948	118.421
Mar. 05	49.097		1.776	2.617	53.490	1.375	125	1.450	2.950	75.767	90.170
Abr. 05	16.604			2.148	18.752			400	400	82.523	100.382
May. 05	25.631		1.105		26.736					96.273	72.246
Jun. 05	20.311		1.356		21.667	815			815	82.906	76.412
Jul. 05	36.309	187	3.397		39.893	800			800	74.382	90.959
Ago. 05	9.953		431		10.384	25			25	91.498	68.809
Sep. 05	28.168		2.011	1.622	31.801					100.316	76.061
Oct. 05										119.910	70.405
Total	317.233	187	22.510	28.027	367.958	49.328	612	12.050	61.990	1.136.191	2.244.061

Tabla 21Desembarque en peso (kg) de jaibas extraídas mediante trampas, distribuidos por puerto, procedencia, especie y mes.

A. CARELMAPU Nov-04 | Dic-04 | Ene-05 | Feb-05 | Mar-05 | Abr-05 | May-05 | Jun-05 | Jul-05 | Ago-05 | Sep-05 | Procedencia O ct-05 Total Recurso unta Chocoi Jaiba marmola 3.006 1.860 6.018 10.884 Jaiba peluda 2.253 1.394 557 4.204 Jaiba m ora 397 246 643 5 656 3 500 6 575 15 731 Total Punta Lenqui Jaiba marmola 1.760 1.760 Jaiba peluda 73 73 Total 1.833 1.833 TOTAL GENERAL 3.500 6 5 7 5 7 489 17.564 B. ANCUD Nov-04 | Dic-04 | Ene-05 | Feb-05 | Mar-05 | Abr-05 | May-05 | Jun-05 | Jul-05 | Ago-05 | Sep-05 | Procedencia Recurso O ct-05 Total Ahui Jaiba marmola 9.288 2.391 10.740 8.248 2.880 5.200 6.078 2.570 3.587 50.983 Jaiba peluda 263 72 113 449 Jaiba mora 598 598 Jaiba reina 1.949 10 50 2.939 Jaiba indeterm inada 6.679 8.100 3.800 18.579 10.149 6.679 4.340 10.740 8.250 3.730 5.210 6.200 73.548 8.100 3.800 Total Mutrico 788 13.582 2.783 5.175 Jaiba marmola 4.836 Jaiba peluda 88 67 225 393 Jaiba mora 75 Jaiba reina 6.0 Jaiba indeterm inada 1.000 500 800 1.500 500 4.300 1.000 500 5.000 800 1.500 2.850 5.400 800 500 18.410 otal 60 Bahia Ancud Jaiba marmola 28.512 14.977 24.453 16.956 1.940 14.760 13.687 19.350 21.177 31.023 17.908 15.944 220.687 Jaiba peluda 1.350 1.261 2.104 2.057 2.763 2.310 2.253 4.537 152 136 18.923 Jaiba m ora 13.087 11.891 9.484 1.435 5.500 1.520 47.398 Jaiba reina 500 1.130 2.530 320 Total 31.288 16.738 37.540 30.952 1.940 26.302 17.580 21.980 25.315 41.060 19.580 18.610 288.885 Isla Cochino Jaiba marmola 8.898 18.154 5.603 19.352 16.934 15.740 4.333 8.125 97.139 Jaiba peluda 1.370 116 760 467 1.089 3.901 Jaiha mora 0 1 201 4.5 1 247 Jaiba reina 200 40 440 120 880 Jaiba indeterm inada 9.222 3.480 12.702 9.222 3.480 8.900 18.154 5.700 21.923 17.250 16.540 5.240 9.380 80 115.869 Total

Procedencia	Recurso	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05	Total
Punta Quillahua	Jaiba marmola										3.397			3.397
	Jaiba peluda										978			978
	Jaiba mora										125			125
	Jaiba indeterminada						2.500							2.500
	Total						2.500				4.500			7.000
Punta Corona	Jaiba marmola	5.980		2.704	6.200	7.026	11.219		1.600					34.729
	Jaiba peluda	1.397		1.146		324	2.486							5.353
	Jaiba mora					0	0							0
	Jaiba reina	198								60	100			359
	Jaiba indeterminada		1.150					3.950				1.250		6.350
	Total	7.575	1.150	3.850	6.200	7.350	13.705	3.950	1.600	60	100	1.250		46.790
Canal Caulin	Jaiba indeterminada	6900			2700		1500	1500	2500			700	1600	17400
Punta Arena	Jaiba reina								150					150
	Jaiba indeterminada								2800	3200			3800	9800
	Total								2950	3200			3800	
La Capilla	Jaiba indeterminada								300					300
Nal	Jaiba indeterminada											120		120
Punta Lenqui	Jaiba marmola										2804			2804
	Jaiba peluda										96		_	96
	Total										2900			2900
TOTAL GENERAL	·	71.264	28.047	61.286	72.106	33.730	77.730	45.510	53.930	50.265	58.400	44.260	63.830	660.358

D. QUELLON

Procedencia	Recurso	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05	Total
Isla Coldita	Jaiba indeterminada				500	450					Ĭ			950
	Jaiba marmola								815					815
	Total				500	450			815					1.765
Isla Laitec	Jaiba indeterminada		1.200		3.800									5.000
Isla Traiguen	Jaiba marmola	19.800	6.000		10.000									35.800
Yencouma	Jaiba marmola	10.512				1.375								11.888
	Jaiba peluda	488				125								612
	Total	11.000				1.500								12.500
Canal Yelcho	Jaiba indeterminada					200								200
Barranco Chincol	Jaiba indeterminada					400								400
Isla San Pedro	Jaiba indeterminada					400	400							800
Isla Cailin	Jaiba indeterminada		200											200
Isla Guapiquilan	Jaiba indeterminada	4.500												4.500
Isla Tellez	Jaiba marmola									800				800
San Antonio	Jaiba marmola										25			25
TOTAL GENERAL		35.300	7.400		14.300	2.950	400		815	800	25			61.990

C. DALCAHUE

Procedencia	Decures	Nov-04	Dia 04	Ena 05	Cab CC	Maror	1 h r 0 r	May-05	lun Of	11.05	A ~ o . O . T	Can 05	O a t 0.5	Total
	Recurso Jaiba marmola						Abr-05	мау-05	Jun-05		Ago-05	Sep-05	Oct-05	Total
Calen		4.532	6.677	4.393	14.218	13.252				2.331				45.402
	Jaiba peluda			139	955	499				19 1.967				19 3.560
	Jaiba reina	4.532	6.677	4.532	15.173	13.751								48.981
Dile	Total Jaiba marmola						40.054	45.040	2 2 2 2	4.316	4.726	0.040		
Rilan		10.860	15.342	9.607	6.865 212	251	12.854		3.298		302	8.343		115.600
	Jaiba reina	6.301	1.005				40.054	471	102	855		533		10.923
0 0 1/ 1	Total	17.161	16.347		7.077	15.314			3.400		5.028	8.876		126.523
Curaco De Velez	Jaiba marmola	36.558		12.815	9.292	13.519	1.080	2.040	5.428	6.929	3.796	5.743		97.201
	Jaiba reina	654		1.805	473	1.026		337	820	249	64	589		6.016
	Jaiba indeterminada	0 = 0 1 0	12.899				4 0 0 0							12.899
	Total	37.212	12.899	14.620	9.765	14.545	1.080	2.377	6.248	7.178	3.860	6.332		116.116
Punta Tenaun	Jaiba marmola					2.566								2.566
	Jaiba reina					0								0
	Total					2.566								2.566
Isla Chelin	Jaiba marmola					4.697	2.670			4.032				11.399
	Jaiba peluda									168				168
	Total					4.697	2.670			4.200				11.567
Rada Quetalco	Jaiba indeterminada					2.617								2.617
Islas Chauques	Jaiba indeterminada						2.148							2.148
Isla Lemuy	Jaiba indeterminada	2.634												2.634
	Jaiba marmola										1.431	4.877		6.308
	Jaiba reina										65	428		494
	Total	2.634									1.496	5.305		9.435
Ahoni	Jaiba indeterminada											1.622		1.622
Puerto San Juan	Jaiba indeterminada		6.107											6.107
	Jaiba marmola							3.295						3.295
	Jaiba reina							143						143
	Total		6.107					3.438						9.545
Isla Lin-Lin	Jaiba marmola									3.512				3.512
	Jaiba reina									98				98
	Total									3.610				3.610
Isla Mechuque	Jaiba marmola											1.631		1.631
	Jaiba reina											50		50
	Total											1.681		1.681
Achao	Jaiba marmola											1.925		1.925
	Jaiba reina											103		103
	Total											2.028		2.028
Huyar	Jaiba marmola							5.057	11.586	6.103		5.650		28.395
	Jaiba reina							153	433	229		307		1.123
	Total							5.210	12.019	6.332		5.957		29.518
TOTAL GENERAL		61.539	42.030	29.650	32.015	53.490	18.752	26.736	21.667	39.893	10.384	31.801		367.958

E. FUERTO CHACAB														
Procedencia	Recurso	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05	Total
Isla Rojas	Jaiba marmola			11.035										11.035
Grupo Las Ratas	Jaiba marmola						1.430							1.430
Isla Vergara	Jaiba marmola						727							727
Isla Inca	Jaiba marmola						797							797
Ensenada Rallay	Jaiba marmola			9.570										9.570
Corriente La Vaca	Jaiba marmola		54.000	4.620									4.285	62.905
Caleta Vidal	Jaiba marmola						413							413
Islas Canquenes	Jaiba marmola				5.202								1.001	6.203
Isla Costas	Jaiba marmola	40.700	47.000		31.093	19.036	1.435							139.264
Pilcomayo	Jaiba marmola		25.455		25.552	17.363	47							68.417
Punta Pescadores	Jaiba marmola				15.101								1.136	16.237
Isla Churrecue	Jaiba marmola					20.010								20.010
Grupo Los Mogotes	Jaiba marmola	71.787												71.787
Isla Castillo	Jaiba marmola	71.500												71.500
Barros Arana	Jaiba marmola												1.433	1.433
Isla Cuervo	Jaiba marmola												125	125
Puerto Bonito	Jaiba marmola												1.780	1.780
Isla Ballico	Jaiba marmola												916	916
Isla Yates	Jaiba marmola												2.670	2.670
Area 78	Jaiba marmola												98	98
Area 172	Jaiba marmola					19.358	1.566							20.924
Area 173	Jaiba marmola												249	249
Area 190 a 197	Jaiba marmola						76.017							76.017
Area 198	Jaiba marmola							7.367		10.540	10.720			28.627
Area 199	Jaiba marmola							6.460						6.460
Area 200	Jaiba marmola							5.668	14.843					20.511
Area 201	Jaiba marmola							5.035		7.010				12.045
Area 202	Jaiba marmola							3.566		12.546				16.112
Area 203	Jaiba marmola							11.307	4.532	20.384				36.223
Area 204	Jaiba marmola							9.640	24.841	13.024				47.504
Area 205	Jaiba marmola							17.016						17.016
Area 206	Jaiba marmola							9.855	4.564					14.419
Area 207	Jaiba marmola							11.049	18.415					29.464
Area 208	Jaiba marmola							9.310						9.310
Area 209	Jaiba marmola								8.999					8.999
Area 210	Jaiba marmola								6.713					6.713
Area 211	Jaiba marmola									10.879				10.879
Area 212	Jaiba marmola										9.568		25.797	35.366
Area 213 a 217	Jaiba marmola												69.851	69.851
Area 218 a 226	Jaiba marmola											100.316		100.316
Area 227 a 230	Jaiba marmola										71.210			71.210
Urones	Jaiba marmola												1.691	1.691
Punta Jaim e	Jaiba marmola												8.878	8.878
TOTAL GENERAL		183.987	126.455	25.225	76.948	75.767	82.523	96.273	82.906	74.382	91.498	100.316	119.910	1.136.191

 Tabla 22

 Esfuerzo estimado (horas de buceo) realizado por la flota que extrae jaibas mediante sistema de buceo.

Centro muestreo	Procedencia	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05	Total
CARELMAPU	Canal Chacao	78,8		4										82,80
	Total	78,8		4										82,80
ANCUD	Mutrico	123,8	29,8	38	54	128,75	141,4	37,75	52,50	87,50	137,17	206,67	182,00	1219,28
	Isla Cochino	83,4	22,5	74	59	91,3	120,3	62,25	54,75	92,42	78,50	84,08	91,42	913,92
	Bahia Ancud	3				33,5	59,4	24,00	33,50	40,00			13,83	234,98
	Ahui	38,5		4	17	18	19	0,25	9,00	10,67	16,50	19,50	30,00	182,42
	Punta Yuste					8,5	42,8	19,00	3,00	21,00			15,50	159,05
	Carbonero	15			3		19,5		4,00	6,00			10,00	104,50
	Isla Sebastiana					9	5	4,00	16,50		11,00			53,00
	Punta Corona			1			1,5	3,00	0,50					6,00
	Punta Chocoi							6,00						6,00
	La Horca				5,5									5,50
	Playa Chauman								4,00					4,00
	Punta Chaicura									3,00				3,00
	Canal Caulin				2									2,00
	Farallones										2,00			2,00
	Guabun								1,50					1,50
	Total	263,65	52,3	117	140,5	289,05	408,9	156,25	179,25	268,08	304,08	375,33	342,75	
QUELLON	Isla Laitec	18								2	4			24,00
	Canal Yelcho									13				18,33
	Barra Chiguao	5									13			17,67
	El Pinto	13,5								2	2			17,50
	Quellon Viejo										14			14,00
	San Antonio	2												2,00
	Total	38,5								17,33				93,50
TOTAL GENER	AL	380,95	52,30	121,00	140,50	289,05	408,90	156,25	179,25	285,42	341,75	375,33	342,75	3073,45

 Tabla 23

 Esfuerzo estimado (horas de reposo) realizado por la flota que extrae jaibas mediante sistema de trampas

Punta Lenqui Total	Centro muestreo	Procedencia	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05	Total
ANOUD Bahla Ancud 91.197 58.742 93.527 91.865 45.107 87.755 77.583 59.854 91.511 126.292 50.629 51.520 92.851 1520	CARELMAPU	Punta Chocoi										Ŭ		5.709	13.728
ANGUD		Punta Lengui			5.100										5.100
Isla Cochino		Total			11.199			1.920							13.119
Ahui Punta Corona Punta Corona Punta Corona Punta Corona Punta Corona Punta Corona Punta Corona Punta Corona Punta Corona Punta Chocoi Mutrico Canal Caulin Amortingado Punta Corona Punta Corona Punta Corona Punta Corona Punta Corona Punta Corona Punta Chocoi Mutrico Canal Caulin Punta Corona Punta Coron	ANCUD	Bahia Ancud	91.197	58.742	93.527	91.865	45.107	87.755	77.583	59.854	91.511	126.292	50.629	51.520	925.582
Punta Corona 15.385 2.423 8.760 7.102 13.589 37.942 13.542 3.060 6.970 3.600 1.320 1.700 1		Isla Cochino	21.896	8.834	16.525	41.063	6.132	49.705	34.398	27.489	27.894	12.481	10.105	26.791	283.313
Punta Chocoi	,	Ahui	24.747	18.252	9.980	15.799	24.471	20.670	13.560	13.525	21.380	7.284	6.465	9.117	185.250
Mutrico Canal Caulin 9.638 7.920 9.405 1.536 2.970 6.312 10.608 1.260 2.950 1.440 2.360 2.950 1.440 2.360 2.950 2.560 4.950 8.640 0 3.360 3.360 2.350 3.260 2.350 2.560 4.950 3.600 3.360	,	Punta Corona	15.385	2.423	8.760	7.102	13.589	37.942	13.542	3.060	6.970	3.600	1.320		113.693
Canal Caulin Amortiajado Punta Quillahua Golfo Quetalmahue Punta Arenas Punta Lenqui La Capilla Total	,	Punta Chocoi													58.816
Amortajado Punta Quillahua Golfo Quetalmahue Punta Arenas Punta Lenqui La Capilia Nal Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal La Capilia Nal Nal La Capilia Nal Nal La Capilia Nal Na	,	Mutrico			2.195		9.405					1.260	2.950		39.666
Punta Quillahua	,							2.560	2.560	4.950			-		39.628
Colfo Quetalmahue	,		7.311			5.500							1.530		23.471
Punta Arenas	,	Punta Quillahua													18.200
Punta Lenqui La Capilla Nai 1.020 3.840	,	Golfo Quetalmahue	4.580					4.480			2.674			3.100	14.834
La Capilla Total 174.754 88.251 137.086 170.239 102.700 210.838 144.613 124.980 189.717 158.047 82.249 132.949 1.71	,									8.770					8.770
Nal	,											3.840			3.840
Total	,									1.020					1.020
DALCAHUE	,														340
Curaco De Velez Calen 3.400 6.000 7.400 9.500 9.200 4.800 9.702 7.866 6.64 6.860 8.036 8.0														132.949	
Calen Huyar Sista Chelin Isla Lin-Lin Puerto San Juan Islas Chauque Sista Mechauque Achao Quetalco Punta Tenaun Total Total Sista Coldita Isla Lin-Lin Puerto San Juan Sista Chelin Sista Chelin Sista Mechauque Sista Mechauque Sista Mechauque Sista Mechauque Sista Chelin Sista	DALCAHUE														126.487
Huyar Isla Chelin Isla Lemuy Isla Lin-Lin	,								0	7.140		6.860	8.036		84.160
Isla Chelin Isla Lemuy 2.880 2.600 3.200 5.720 2.156 6.398 1 1 1 1 1 1 1 1 1	,		3.400	6.000	7.400	9.500	9.200	4.800							50.002
Isla Lemuy										10.400			7.085		32.381
Isla Lin-Lin	,						2.600	3.200			5.720				11.520
Puerto San Juan Islas Chauques	,		2.880								7.044	2.156			11.434
Islas Chauques	,			0.100					0.000		7.644		2.670		10.314
Isla Mechuque	,			2.400											6.200
Achao Quetalco Punta Tenaun Total 40.690 28.305 22.210 21.500 33.550 25.155 22.570 20.740 70.246 18.060 41.577 34 QUELLON Yencouma Isla Coldita Isla Laitec Canal Yelcho Isla Guapiquilan Barranco Chincol Isla Cailin Isla San Pedro San Antonio Total 11.960 2.040 2.140 11.048 234 2.200 136 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 2.940 3.940 3.940 3.940 4.957 3.940 4.969 4.	,							3.465					0.040		3.465
Quetalco Punta Tenaun 1.400 1.360 Total 2.210 40.690 28.305 28.305 22.210 21.500 25.155 33.550 25.155 22.570 20.740 20.740 70.246 70.246 18.060 18.060 41.577 34 41.577 34 34 34 34 34 QUELLON 10.232 6.048 2.200 2.200 11.724 11.724 11.724 11.724 11.728 11.728 11.728 11.680	,														2.940
Punta Tenaun	,						4 400						2.940		2.940
Total	,		-												1.400
Yencouma	,		40.600	20 205	22 210	21 500		25 155	22 570	20.740	70 246	19.060	11 577		1.360 344.603
Isla Coldita	OHELLON			20.303	22.210	21.300		25.155	22.570	20.740	70.240	18.000	41.577		16.280
Isla Laitec	QULLLON		10.232			400				2 200					3.520
Canal Yelcho	,		-	900			920			2.200					2.640
Isla Guapiquilan 1.728			-	900		1.740	2 400								2.400
Barranco Chincol	,		1 728				2.400								1.728
Isla Cailin 1.140 Isla San Pedro 234 San Antonio 136 Total 11.960 2.040 2.140 11.048 234 234 2.200 136 2.200	,		1.720				1.680		 						1.680
Isla San Pedro 234 San Antonio 136 Total 11.960 2.040 2.140 11.048 234 234 2.200 136 2.200	,			1 140			1.000		 						1.140
San Antonio 136 Total 11.960 2.040 2.140 11.048 234 2.200 136 2	,		 	1.1.40		1		234	 			1	1		234
Total 11.960 2.040 2.140 11.048 234 2.200 136 2	,		 			1		254	 			136	1		136
	,		11.960	2.040		2.140	11.048	234	1	2.200					29.758
TOTAL GENERAL 227.404 118.596 170.495 193.879 147.298 238.147 167.183 147.920 259.963 176.243 123.826 132.949 2.10	TOTAL GENERA		227.404		170.495				167.183		259.963		123.826	132.949	2.103.903

Tabla 24Rendimiento (kg/h-buceo) realizado por la flota que extrae jaibas mediante sistema de buceo

Centro muestreo	Procedencia	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	Oct-05
CARELMAPU	Canal Chacao	58,1		64,0									
ANCUD	Ahui	29,4		45,8	26,5	23,1	29,5	40,0	31,8	41,1	31,5	47,3	28,3
	Mutrico	38,8	32,1	40,3	48,6	28,3	31,3	30,5	38,1	35,8	40,1	41,3	46,8
	Bahia Ancud	30,7				17,2	23,6	20,5	34,4	24,7	29,2	20,3	27,5
	Isla Cochino	30,7	37,4	46,6	45,3	30,9	30,7	28,9	32,0	33,1	31,4	36,4	35,5
	Punta Yuste					27,9	30,7	10,8	25,0	34,6	32,0	38,0	37,6
	Isla Sebastiana					51,9	123,2	27,0	21,6	23,6	35,5		
	Punta Corona			60,0			22,0	15,0	40,0				
	Carbonero	35,7			52,7		38,3		62,5	50,0	35,7	48,7	54,7
	La Horca				25,5								
	Canal Caulin				19,0								
	Punta Chaicura									19,3			
	Playa Chauman								100,0				
	Farallones										20,0		
	Guabun								20,0				
	Punta Chocoi							50,0					
QUELLON	Barra Chiguao	16,2									67,0		
	El Pinto	33,3								59,0			
	Isla Laitec	35,2								15,0	50,0		
	San Antonio	17,0											
	Canal Yelcho									52,3			
	Quellón Viejo										10,8		

Tabla 25Rendimiento (kg/h-reposo) realizado por la flota que extrae jaibas mediante sistema de trampas

Centro muestreo	Procedencia	Nov-04	Dic-04	Ene-05	Feb-05	Mar-05	Abr-05	May-05	Jun-05	Jul-05	Ago-05	Sep-05	O ct-05
CARELMAPU	Punta Chocoi			0,927			1,823						1,152
	Punta Lenqui			0,412									
ANCUD	Ahui	0,410	0,366	0,435	0,513	0,439	0,399	0,275	0,385	0,290	0,522	0,398	0,415
	A m ortajado	0,547			0,545								1,483
	Bahia Ancud	0,343	0,285	0,401	0,337	0,043	0,300	0,227	0,367	0,277	0,325	0,387	0,361
	Canal Caulin	0,716			0,341		0,586	0,586	0,505				0,476
	Golfo Quetalmahue	0,465					0,212			0,408			0,419
	Isla Chelin									0,734			
	Isla Cochino	0,421	0,394	0,539	0,442	0,930	0,441	0,501	0,602		0,420	0,928	0,003
	La Capilla								0,294				
	Mutrico			0,456	0,505	0,532	0,521	0,505	0,452	0,509	0,635	0,020	0,347
	Nal											0,353	
	Punta Arena								0,336				
	Punta Chocoi			0,927		0,751	0,804			1,014		1,190	0,905
	Punta Corona	0,492	0,475	0,439	0,873	0,541	0,361	0,292	0,523		0,028	0,947	
	Punta Lenqui										0,755		
	Punta Quillahua						0,633				1,368		
DALCAHUE	Achao											0,690	
	Calen	1,333	1,113	0,612	2,050	1,495				0,445			
	Curaco De Velez	1,644	1,346	1,882	1,453	1,924	0,900		0,875		0,563	0,788	
	Huyar								1,156	0,425		0,841	
	Isla Chelin					1,807	0,834						
	Isla Lemuy	0,915									0,694	0,829	
	Isla Lin-Lin									0,472			
	Isla Mechuque											0,572	
	Islas Chauques						0,620						
	Puerto San Juan		2,545					0,905					
	Punta Tenaun					1,887							
	Quetalco					1,869							
	Rilan	1,457	1,583	1,491	1,340	1,340	1,029	0,837	1,063	0,556	0,556	0,771	
QUELLON	Barranco Chincol					0,238							
	Canal Yelcho					0,083							
	Isla Cailin		0,175										
	Isla Coldita					0,489			0,370				
	Isla Guapiquilan	2,604											
	Isla Laitec		1,333		2,184								
	Isla San Pedro						1,709						
	San Antonio										0,184		
	Yencouma	1,075				0,147							

Tabla 26Moda presente en las estructuras de talla analizadas de jaibas marmola analizadas por puerto, sexo y arte de pesca.

Puerto	Sexo	Arte pesca	Moda (mm)
Carelmapu	М	Т	120
Carelmapu	Н	Т	110
Ancud	М	В	120
Ancud	Н	В	110
Ancud	M	Т	110
Ancud	Н	Т	100
Dalcahue	М	Т	120
Dalcahue	Н	Т	110
Quellón	M	В	130 a 150
Quellón	Н	В	120
Quellón	M	Т	120 a130
Quellón	Н	T	110
Pto. Chacabuco	М	T	130
Pto. Chacabuco	Н	T	130

T : trampa B : buceo

Tabla 27
Tallas medias (ancho cefalotoráxico, mm) de jaiba marmola y coeficiente de variación, por sexo para cada una de las zonas y períodos. Nov-dic 2004 y ene-oct 2005.

							Peri	iodo					
Zona	Sexo	Ene	- Feb	Mar	- Abr	May	- Jun	Jul	- Ago	Sep	- Oct	Nov	· - Dic
		Prop	CV (%)	Prop	CV (%)	Prop	CV (%)	Prop	CV (%)	Prop	CV (%)	Prop	CV (%)
1	Machos	-	-	109	8.4	115	7.7	106	9.2	122	4.5	110	7.4
	Hembras	-	-	102	5.4	103	13.5	96	13.8	106	15.6	102	8.7
2	Machos	107	8.3	112	6.8	116	7.0	111	6.2	116	5.8	112	4.6
	Hembras	104	8.3	101	5.6	101	7.4	99	10.6	107	7.4	100	10.5
3	Machos	120	8.4	120	6.7	115	11.6	122	9.9	-	-	120	8.5
	Hembras	112	6.0	109	5.6	-	-	-	-	-	-	111	7.0
4	Machos	121	8.9	121	5.5	122	6.1	126	4.6	134	4.8	116	6.7
	Hembras	112	6.5	111	5.5	108	9.6	111	9.4	119	3.2	107	6.1
5	Machos	120	8.3	127	8.1	123	4.9	123	5.4	-	-	121	5.2
	Hembras	109	9.7	111	6.8	107	10.3	-	-	-	-	109	5.4
6	Machos	135	4.1	138	4.5	135	3.5	133	5.5	130	5.2	136	3.9
	Hembras	130	6.8	132	4.6	131	5.7	132	11.8	126	9.2	130	4.0
7	Machos	128	7.2	-	-	134	4.8	129	4.8	130	4.3	132	5.8
	Hembras	123	8.6	133	7.8	130	5.7	131	7.3	126	6.0	124	8.6

Tabla 28Proporción bajo la talla mínima legal (120 mm) de jaiba marmola y coeficiente de variación, por sexo para cada una de las zonas y períodos. Nov-dic 2004 y ene-oct 2005.

							Peri	odo					
Zona	Sexo	Ene	- Feb	Mar	- Abr	May	/ - Jun	Jul -	- Ago	Sep	- Oct	Nov	/ - Dic
		Prop	CV (%)	Prop	CV (%)	Prop	CV (%)	Prop	CV (%)	Prop	CV (%)	Prop	CV (%)
1	Machos	-	-	0.83	14.2	0.71	14.2	0.79	9.2	0.49	8.7	0.79	8.9
	Hembras	-	-	0.92	10.9	1.00	10.9	0.94	13.8	0.86	16.6	1.00	8.8
2	Machos	0.88	9.1	0.76	8.0	0.65	8.0	0.75	6.2	0.65	8.4	0.73	7.4
	Hembras	0.88	8.5	0.96	5.5	0.99	5.5	0.99	10.6	0.93	7.8	0.99	10.5
3	Machos	0.58	11.9	0.54	9.5	0.74	9.5	0.55	9.9	-		0.55	12.5
	Hembras	0.80	6.7	0.83	6.1	-	6.1	-	-	-		0.85	7.1
4	Machos	0.50	13.1	0.53	7.3	0.54	7.3	0.44	4.6	0.27	10.7	0.64	8.0
	Hembras	0.81	6.4	0.85	5.9	0.89	5.9	0.81	9.4	0.59	4.2	0.93	6.4
5	Machos	0.57	9.8	0.46	11.0	0.52	11.0	0.54	5.4	-		0.51	7.5
	Hembras	0.89	10.4	0.82	7.4	0.91	7.4	-	-	-		0.89	5.8
6	Machos	0.03	24.1	0.04	22.8	0.04	22.8	0.11	5.5	0.28	10.5	0.04	24.0
	Hembras	0.02	38.8	0.03	35.4	0.05	35.4	0.07	11.8	0.28	17.2	0.04	23.2
7	Machos	0.25	16.2	-		0.04		0.28	4.8	0.28	8.3	0.18	21.7
	Hembras	0.33	16.3	0.05	37.2	0.04	37.2	0.15	7.3	0.25	12.8	0.31	17.7

Tabla 29Proporción a la talla (ancho cefalotoráxico) de jaiba marmola y coeficiente de variación, sin diferenciar por sexo. Por zona y para todo el período analizado. Nov-dic 2004 y ene-oct 2005

							ZONA							
Categoría	1)		3	20.0.4	1	5	i		3	7	7
Talla (3 mm)	Prop	CV	Prop	CV	Prop	CV	Prop	cv	Prop	CV	Prop	cv	Prop	CV
47	.001	96.9												
50	.000	98.5												
53	.001	68.3												
56	.000	73.1												
59	.001	96.4												
62	.001	96.9	.000	100.8										
68	.000	73.1												
71	.003	54.0	.000	61.3							Ι.	١.		
74	.002	66.2	.001	81.8										
77	.005	59.3	.001	43.1	.000	101.6								
80	.005	82.2	.003	37.3			.000	89.5			l .	١.		
83	.014	37.6	.004	28.2	.000	101.6	.000	77.7			:			
86	.021	26.7	.018	17.4	.000	101.6	.000	60.6			l .	١.	.000	99.6
89	.033	23.4	.034	19.5	.003	41.1	.006	33.2	.004	42.4	.000	87.1		
92	.051	15.0	.050	13.4	.018	33.0	.017	21.9	.010	26.6	.000	87.1	.001	83.3
95	.076	11.8	.079	11.1	.033	16.0	.031	15.3	.025	15.0	.000	85.5	.003	51.5
98	.091	14.7	.088	8.6	.057	12.3	.046	13.2	.063	12.1			.001	61.7
101	.115	10.4	.110	6.8	.081	8.7	.084	12.1	.070	7.0	.000	87.1	.011	47.1
104	.088	9.2	.112	7.2	.104	8.8	.094	9.3	.099	9.2	.000	96.2	.019	47.3
107	.089	13.0	.080	6.6	.102	8.1	.091	7.8	.105	7.4	.001	78.5	.025	32.9
110	.058	11.1	.072	9.9	.072	9.4	.064	8.4	.068	9.0	.002	37.6	.028	31.7
113	.068	10.5	.068	14.8	.090	9.4	.089	6.5	.088	7.4	.005	43.6	.033	28.9
116	.048	18.6	.048	10.9	.081	9.3	.069	8.2	.071	7.5	.022	28.3	.043	17.1
119	.048	15.6	.045	12.6	.063	11.0	.069	6.8	.056	7.9	.054	15.3	.076	12.0
122	.037	13.7	.036	13.3	.057	9.2	.062	9.7	.045	8.7	.087	5.6	.109	6.2
125	.024	19.8	.033	14.9	.044	10.8	.040	10.2	.042	9.0	.155	5.6	.101	10.5
128	.026	15.8	.022	20.4	.038	15.6	.040	9.9	.036	11.1	.132	4.5	.106	9.1
131	.021	18.7	.024	13.8	.027	14.6	.031	12.6	.038	11.1	.108	5.8	.100	9.1
134	.009	27.4	.015	24.8	.030	15.8	.030	12.8	.040	10.5	.100	5.1	.072	9.9
137	.015	27.7	.015	23.3	.022	19.3	.028	11.8	.030	10.6	.075	4.4	.060	9.7
140	.009	23.1	.010	22.9	.017	17.6	.017	17.4	.016	18.0	.047	6.9	.045	10.8
143	.011	30.4	.010	24.9	.018	16.6	.016	14.2	.014	17.8	.051	6.7	.041	11.6
146	.007	38.2	.006	23.3	.009	23.4	.017	17.0	.017	13.6	.047	6.8	.033	10.8
149	.008	32.6	.006	28.0	.011	22.5	.014	20.2	.015	16.0	.030	8.5	.019	16.6
152	.008	37.2	.004	46.0	.004	41.4	.014	19.1	.010	23.5	.029	7.9	.019	15.3
155	.001	76.4	.004	40.6	.004	45.9	.006	23.7	.008	24.3	.023	10.7	.019	14.2
158	.001	65.7	.001	52.0	.003	44.0	.006	23.7	.008	26.1	.011	12.8	.007	26.0
161	.004	65.9	.001	47.5	.003	43.1	.004	29.2	.003	35.5	.010	14.1	.007	20.4
164	.002	102.0	.002	57.0	.003	67.9	.004	20.1	.005	28.4	.006	16.9	.004	27.7
167	.000		.002	73.6	.001	63.6	.003	33.5	.003	31.0	.004	22.5	.003	39.7
170	'		.000	71.0	.001	49.5	.003	27.3	.004	34.2	.004	28.8	.003	55.8
173	.001	96.9	.000	100.6	.002	63.8	.004	41.2	.003	54.2	.002	48.6	.002	38.2
176		30.9			.002	05.0	.001	58.6	.002	42.1	.002	75.2	.002	64.3
179	•	.			.001	98.8	.001	42.7	.002	39.0	.000	13.2	.001	68.9
182	٠		.001	100.3		30.0	.001	72.1	.003	49.6			.000	87.8
185	•	•	.001	100.3			.000	67.0	.002	45.0	.000	99.6	.000	103.7
188	•		.000	100.2			.000	100.5	.001	70.7	.000	35.0	.000	103.7
191	•	•	.000	100.2			.000	100.5	.001	/0./				
191		•	.					100.5		100.2				
194	·	•		104 5					.000	100.2				
197			.000	101.5				<u> </u>	.001	100.0				

Tabla 30Proporción a la talla (ancho cefalotoráxico) de jaiba marmola y coeficiente de variación, machos. Por zona y para todo el período analizado. Nov-dic 2004 y ene-oct 2005

							ZONA	١						
Categoría	1		- 2	2	3	3	4			5	6	3	-	7
Talla (3 mm)	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV
47	.001	98.3												
50	.001	98.3												
53	.001	98.3												
56	.001	98.3												
59	.001	97.0												
62	.001	98.3	.000	101.7										
68	.001	75.8												
71	.004	68.3	.000	101.7										
74	.002	96.5	.000	77.0										
77	.005	70.2	.001	72.2								l .		
80	.007	81.3	.001	76.4			.000	89.7						
83	.015	40.6	.003	46.3										
86	.025	31.7	.010	24.9			.000	89.2	:				.001	99.6
89	.024	33.9	.026	25.6	.007	43.1	.007	45.3	.002	85.1	.000	90.5		00.0
92	.024	19.8	.035	16.3	.007	50.1	.018	33.8	.002	59.7	.000	95.1	.002	83.2
95	.064	19.0	.063	15.6	.013	34.4	.023	26.0	.015	25.0	.000	90.5	.002	59.7
98	.072	22.3	.003	13.7	.013	25.0	.023	20.8	.039	17.8	.000	90.5	.000	86.3
101														
	.080	18.0	.091	10.0	.040	21.4	.056	15.2	.041	14.2	.000	90.5	.015	54.7
104	.080	11.8	.102	9.9	.087	18.4	.070	16.4	.059	10.9	.000	95.1	.011	47.1
107	.084	16.7	.079	9.1	.072	15.8	.058	12.6	.085	10.5	.001	79.6	.019	32.5
110	.057	16.3	.071	11.5	.065	15.9	.054	11.4	.052	11.5	.002	40.0	.020	28.9
113	.076	12.8	.067	14.0	.094	10.8	.076	10.4	.083	10.1	.004	40.4	.026	23.9
116	.064	16.2	.059	10.6	.085	15.2	.070	9.8	.067	11.1	.023	29.3	.044	17.7
119	.059	16.8	.059	11.3	.062	16.6	.073	9.0	.060	10.6	.053	16.1	.076	14.1
122	.042	13.9	.045	14.2	.077	12.1	.082	10.7	.059	10.1	.079	7.0	.105	7.7
125	.031	22.7	.041	16.3	.067	13.6	.056	11.0	.052	12.4	.137	6.5	.085	11.7
128	.029	17.9	.029	22.2	.051	20.5	.051	11.3	.047	13.0	.113	5.9	.086	8.8
131	.029	19.1	.036	13.6	.043	16.6	.045	13.0	.058	11.7	.096	6.1	.094	8.2
134	.013	26.6	.022	24.6	.043	18.1	.043	15.7	.064	12.5	.088	6.7	.070	10.0
137	.015	28.2	.020	22.5	.035	24.7	.040	12.7	.048	10.9	.079	6.8	.062	8.5
140	.014	22.1	.015	24.4	.023	21.6	.022	19.4	.024	19.1	.051	8.0	.055	11.3
143	.017	32.9	.013	26.4	.025	20.9	.023	14.8	.020	18.2	.061	8.3	.052	11.6
146	.010	34.7	.007	24.9	.013	32.4	.026	17.7	.023	16.6	.056	7.7	.043	11.3
149	.012	39.1	.008	27.6	.014	30.2	.017	21.8	.025	16.3	.038	10.3	.025	16.8
152	.015	48.2	.004	48.4	.006	48.7	.015	21.5	.012	25.8	.038	9.4	.037	16.5
155	.003	75.1	.002	40.4	.006	45.8	.007	26.2	.011	25.1	.028	12.7	.030	17.6
158	.006	64.3	.002	50.7	.006	45.3	.010	25.4	.010	28.7	.017	14.7	.008	30.6
161	.003	64.5	.002	48.1	.006	56.0	.005	29.5	.005	39.9	.017	15.7	.012	22.5
164	.001	102.5	.003	57.6	.003	68.2	.011	23.8	.007	32.9	.007	17.1	.007	30.2
167		. 52.0	.003	71.2	.003	62.9	.004	34.5	.006	34.9	.006	24.1	.007	44.5
170	'		.001	71.2	.002	60.1	.007	29.8	.004	40.7	.003	30.8	.003	60.9
173	.001	98.3	.000	100.8	.003	62.7	.007	47.2	.004	51.3	.003	56.3	.003	40.9
176	.001		.000	100.0	.004	02.7	.002	72.1	.001	46.8	.003	99.9	.003	60.7
179	'				.001	98.8	.002	45.2	.004		.000	99.9	.001	
182				400.4	.001	90.0	.002	45.∠	l	41.2		Ι.		93.8
	•		.001	100.4					.002	49.9			.000	85.0
185							.000	68.0			.000	99.9	.000	103.0
188			.001	100.3			.000	100.6	.001	76.0			· ·	
191							.000	100.4						
194									.001	100.1				
197									.001	100.0	<u> </u>	<u> </u>		

Tabla 31Proporción a la talla (ancho cefalotoráxico) de jaiba marmola y coeficiente de variación, hembras. Por zona y para todo el período analizado. Nov-dic 2004 y ene-oct 2005

							ZOI	NA						\neg
Categoría	1		2		3				5	5	6	i	7	
Talla (3 mm)	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV
47	.001	98.0												
53	.001	98.0												
59	.001	98.0												
62	.001	98.0												
71	.002	97.1	.001	73.7										
74	.004	75.4	.001	96.8										
77	.007	63.6	.001	63.1	.000	101.4								
80	.006	96.5	.006	40.6										
83	.011	64.2	.005	38.9	.000	101.4	.000	82.1						
86	.020	31.3	.030	25.1	.000	101.4	.001	65.4						
89	.048	27.5	.053	20.7	.000	101.4	.006	37.7	.007	39.9				
92	.068	22.3	.080	15.5	.031	31.3	.021	26.4	.017	27.9				
95	.080	18.4	.117	12.1	.052	17.4	.044	15.6	.045	17.3			.003	54.7
98	.119	15.2	.112	9.0	.073	11.9	.079	12.9	.110	16.3			.002	64.8
101	.163	13.0	.163	8.9	.124	10.5	.129	12.1	.103	10.3			.008	49.8
104	.118	12.9	.144	8.3	.131	9.0	.137	9.6	.151	10.6	.002	99.3	.021	52.3
107	.099	24.2	.081	10.4	.127	10.2	.140	9.3	.129	10.7	.002	99.3	.026	39.8
110	.054	21.6	.068	19.5	.071	13.0	.073	10.8	.094	13.4	.000	100.5	.028	39.0
113	.057	17.9	.051	27.3	.087	14.0	.104	9.4	.097	11.4	.007	61.4	.032	37.8
116	.031	31.3	.024	24.9	.075	11.0	.062	14.1	.073	13.4	.010	38.0	.038	22.1
119	.027	37.3	.023	35.2	.062	15.6	.061	12.8	.053	13.8	.056	19.3	.069	11.9
122	.026	38.7	.009	34.6	.033	17.8	.041	18.9	.027	18.1	.101	8.3	.120	9.7
125	.012	45.7	.011	44.3	.022	25.5	.018	22.5	.030	19.5	.188	7.0	.134	11.8
128	.020	39.6	.008	45.6	.023	22.8	.024	19.7	.019	23.8	.166	6.3	.146	11.5
131	.005	63.2	.003	55.2	.015	31.4	.013	30.9	.010	30.8	.135	8.5	.116	11.9
134	.004	65.0	.002	64.8	.020	27.4	.010	28.4	.008	30.0	.117	8.4	.080	13.0
137	.007	60.2			.010	40.4	.010	39.9	.006	39.0	.076	11.0	.060	15.0
140	.002	100.8	.001	74.6	.010	32.8	.006	34.7	.003	52.7	.036	14.9	.029	19.0
143	.002	100.8	.001	101.3	.012	28.4	.004	44.9	.003	52.6	.031	15.0	.030	24.0
146			.003	63.9	.007	37.4	.002	51.7	.006	37.4	.029	15.5	.020	22.9
149	.004	65.3	.001	77.2	.009	41.4	.007	36.1	.001	99.2	.017	33.5	.008	35.9
152			.000	102.3	.001	99.1	.003	48.6	.004	43.1	.015	24.1	.016	35.2
155	l .				.002	100.1	.002	70.2	.001	98.6	.007	29.6	.005	44.8
158							.001	73.1	.002	68.2	.001	54.4	.006	42.4
161	l .				.001	100.4	.000	100.7			.001	70.6		
164					.		.002	62.2	.001	100.1	.001	65.0	.000	75.6
167	l .								.000	103.3				
170	l .				.001	98.8			.001	100.1				
173	.001	98.0					.001	100.3			.001	99.2		
179					.								.000	99.6
197	l .		.000	102.3										

Tabla 32Resultados de las pruebas estadísticas K-S, de comparaciones de distribuciones de tallas de jaiba marmola entre zonas, total y por sexo.

Zono	То	tal	Mad	chos	Hem	nbras
Zona	$D_{ m max}$	$D_{lpha,n}$	$D_{ m max}$	$D_{lpha,n}$	$D_{ m max}$	$D_{lpha,n}$
1-2	0.0322*	0.0344	0.0481	0.0471	0.0636	0.0588
3-4	0.0516	0.0367	0.0540	0.0507	0.0362*	0.0550
4-5	0.0212*	0.0308	0.0516	0.0379	0.0293*	0.0535
3-5	0.0640	0.0352	0.1012	0.0491	0.0550	0.0520
6-7	0.1779	0.0244	0.1591	0.0304	0.1692	0.0414

^{*} no significativa al 5%

Tabla 33
Características de las distribuciones de talla (ancho cefalotoráxico) del desembarque de jaiba reina, peluda y mora en el Golfo de Ancud. Nov-dic 2004 y ene-oct 2005

Recurso n		Mínima Máxima Media Mediana				Recorrido intercuartil	% BTML	
Reina	488	70	170	107	107	12	91.4	
Peluda	1338	76	199	122	121	25	45.5	
Mora	156	80	194	111	108	21	73.7	

Tabla 34Características de las distribuciones de talla (ancho cefalotoráxico) de jaiba reina por zona Nov-dic 2004 y ene-oct 2005

_				_	Talla (mm)		
Zona	n	Mínima	Máxima	Media	Mediana	Recorrido intercuartil	% BTML
1	268	80	130	106	106	13	94.8
2	220	70	170	109	109	11	87.3
3	177	93	140	116	118	13	60.5
4	382	93	147	118	119	11	53.7
5	190	100	142	119	120	8	45.8

Tabla 35AProporción sexual (%) del desembarque por puerto, recurso y mes, registrada para jaibas extraídas mediante buceo

		M	achos		Н	embras	
Recurso	Mes	Carelmapu	Ancud	Quellón	Carelmapu	Ancud	Quellón
Jaiba	Nov	67	70		33	30	
m arm ola	Dic		80			20	
	Ene	60			40		
	Jul			90			10
	Oct	64			36		
Jaiba	Nov	53	64		47	36	
peluda	Dic		51			49	
	Ene	81			19		
	Mar		93			7	
	Abr		74			26	
	Oct	88			12		
Jaiba	Nov				100		
mora	Dic		27			73	
	Mar		64			36	
	Abr		50			50	
	Jul			54			46

Tabla 35BProporción sexual (%) del desembarque por puerto, recurso y mes, registrada para jaibas extraídas mediante trampas

				Machos					Hembras		
Recurso	Mes	Carelmapu	Ancud	Dalcahue	Quellón	Puerto	Carelmapu	Ancud	Dalcahue	Quellón	Puerto
						Chacab.					Chacab.
Jaiba	Nov		37,9	52,0	66,8	30,0		62,0	48,0	33,1	70,0
marmola	Dic		47,6	55,2		52,0		52,4	44,8		48,0
	Ene	29,0	55,6	57,0		43,0	69,0	44,4	43,0		57,0
	Feb		52,1	60,0	55,8	22,0		47,9	40,0	41,6	78,0
	Mar		52,6	56,0	46,6	38,0		47,4	44,0	53,4	61,0
	Abr	47,1	39,2	43,6	36,0	38,0	52,9	60,8	56,4	64,0	62,0
	May		43,7	26,7		29,1		56,3	73,3		70,9
	Jun		38,4	17,4	23,9	33,4		61,6	82,6	75,6	66,6
	Jul		33,3	19,1	23,6	30,6		66,7	80,9	76,1	69,4
	Ago		48,0	10,0		19,1		52,5	90,0	100,0	80,9
	Sep	25.7	39,0	23,7		19,9	64.0	60,7	76,3		80,0
Jaiba	Oct Nov	35,7	40,0 43,8		40,0	28,6	64,3	60,4 56,3		60,0	71,4
peluda	Dic		43,6 22,2		40,0			77,8		60,0	
peluua	Ene	51,0	50,0				49,0	50,0			
	Feb	31,0	30,6				43,0	68,1			
	Mar		57,1		35,7			42,9		64,3	
	Abr	88,9	26,7		00,1		11,1	73,3		0 1,0	
	May	00,0	30,4				,.	69,6			
	Jun		36,8					63,2			
	Jul		41,1					58,9			
	Ago		60,5					38,6			
	Sep		25,0					75,0			
	Oct	12,5	25,9				87,5	74,1			
Jaiba	Nov		57,1					42,9			
mora	Ene	8,0	15,8				92,0	84,2			
	Mar		40,0					60,0			
	Abr	62,0	66,7				38,5	33,3			
	Jul		0,0	100,0				100,0			
	Ago		57,1					42,9			
1-9	Oct		32,0					68,2	400.0	400.0	
Jaiba	Nov		8,3					91,7	100,0	100,0	
reina	Dic Ene		22,2					77,8	100,0		
	Feb		11,3		14,3			88,7 47,9	100,0 100,0	0E 7	
	Mar		51,8 46,2		14,3			47,9 53,8	100,0	85,7	
	Abr		10,8					89,2	100,0		
	May		33,3					66,7	100,0		
	Jun		33,3		15,0			66,7	100,0	85,1	
	Jul		17,9	1,2	7,0			82,1	98,8	92,7	
	Ago		24,0	.,_	.,,			76,4	100,0	J = ,.	
	Sep		2,2					97,8	100,0		
	Oct		25,0					75,0			

Tabla 36Proporción de machos en la captura de jaiba marmola y coeficiente de variación (%), por zona y período. Nov-dic 2004 y ene-oct 2005

						Perio	do					
Zona	Ene -	Feb	Mar -	Mar - Abr		May - Jun		Jul - Ago		Oct	Nov - Dic	
	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV	Prop	CV
1	0.591	27.4	0.473	12.0	0.600	9.4	0.631	11.9	0.647	6.2	0.626	5.0
2	0.514	7.4	0.534	6.8	0.655	5.4	0.666	9.7	0.616	4.4	0.614	5.3
3	0.413	10.8	0.420	7.5	0.739	6.2	0.811	4.4			0.492	6.2
4	0.409	7.8	0.507	8.5	0.710	4.2	0.764	3.4	0.774	8.0	0.471	6.2
5	0.425	7.2	0.435	6.2	0.794	2.6	0.827	2.3	0.805	2.0	0.473	6.7
6	0.777	1.6	0.544	5.4	0.694	4.7	0.742	9.0	0.832	4.8	0.565	5.8
7	0.475	4.7	0.484	6.1	0.714	4.4	0.767	2.7	0.703	5.0	0.522	12.6

Nota: la diferencia indica la proporción de hembras

Tabla 37Porcentajes de hembras ovíferas en los desembarque por puerto, recurso y mes

Recurso	Mes	Carelmapu	Ancud	Quellón	Pto. Chacabuco
Jaiba	Nov. 04	33,3 (*)			
mora	Dic. 04		13,3 (*)		
	Abr. 05	35,4			
	Jul. 05			7,0 (*)	
	Oct. 05		4,5		
Jaiba	Nov. 04	11,1 (*)	2,7 (*)		0,9
marmola	Dic. 04				1,0
	Ene. 05				0,3
	Mar. 05				0,1
	Jun. 05			0,5	
	Jul. 05			0,3	
	Ago. 05		0,1		
	Sep. 05		0,3		0,1
	Oct. 05		0,2		0,0
Jaiba	Nov. 04	7,4 (*)			
peluda	Dic. 04		22,9 (*)		
	Mar. 05		2,3 (*)		
	Abr. 05		1,7 (*)		
	Ago. 05		0,9		
Jaiba	Jun. 05			5,4	
reina	Jul. 05			1,2	
	Ago. 05		1,1		

^(*) Valores asociados a jaibas extraidas mediante buceo Los restantes correspondes a % extraidos con trampas

Tabla 38Parámetros de las relaciones longitud-peso

Recurso	Puerto	Procedencia	Sexo	tipo	Coef. Potencia	R	Periodo
J. marmola	Ancud	Isla Cochinos	Machos	Isometria	3,0151	0,9143	Feb. 05 - Oct. 05
			Hembras	Alometria negativa	2,7403	0,8156	
J. marmola	Ancud	Punta Corona	Machos	Isometria	3,0446	0,9399	Nov. 04 – Jun. 05
			Hembras	Alometria negativa	2,6976	0,838	
J. marmola	Ancud	Bahía Ancud	Machos	Isometria	3,0156	0,8643	Nov. 04 – Sep. 05
			Hembras	Alometria negativa	2,6879	0,7338	
J. marmola	Dalcahue	Calén	Machos	Isometria	3,064	0,8588	Nov. 04 - Jul 05
			Hembras	Alometria	2,9185	0,8951	
J. marmola	Dalcahue	Rilán	Machos	Isometria	3,0528	0,9252	Nov. 04 – Sep 05.
			Hembras	Alometria	2,8908	0,8764	
J. marmola	Dalcahue	Curaco de Vélez	Machos	Isometria	3,0599	0,9316	Nov. 04 – Ago 05
			Hembras	Alometria negativa	2,9133		
J. marmola	Dalcahue	Isla Chelín	Machos	Isometria	3,1062	0,905	Nov. 04 - Abr 05
			Hembras	Isometria	3,0278	0,8809	
J. marmola	Dalcahue	Huyar	Machos	Isometria	3,0242	0,9388	May. 05 - Sep 05
			Hembras	Alometria negativa	2,7481	0,9021	
J. marmola	Quellón	Curanue	Machos	Isometria	3,0635	0,8733	Jun. 05 - Jul 05
			Hembras	Alometria negativa	2,73	0,8194	
J. marmola	Quellón	Isla Traiguén	Machos	Alometria positiva	3,1338	0,8525	Nov. 04 – Feb. 05
			Hembras	Alometria negativa	2,6619	0,7335	
J. marmola	Pto Chacabuo	Islas Costas	Machos	Alometria positiva	3,1942	0,8553	Nov. 04 – Oct. 05
			Hembras	Alometria negativa	2,7469	0,6999	
J. marmola	Pto Chacabuo	Pilcomayo	Machos	Alometria positiva	3,1292	0,8672	Dic. 04 – Mar 05
			Hembras	Alometria	2,9928	0,8135	
J. marmola	Pto Chacabuo	Cte. La Vaca	Machos	Alometria positiva	3,2317	0,8643	Dic. 04 - Oct 05
			Hembras	Alometria negativa	2,6579	0,7608	
J. peluda	Ancud	Principales procedencias	Machos	Alometria positiva	3,3253	0,8647	Dic. 04 – Oct 05
	<u> </u>		Hembras	Alometria negativa	2,7699	0,7475	
J. reina	Ancud	Principales procedencias	Machos		2,3795	0,7228	Nov. 04 – Oct 05
J. reina	Dalcahue	Principales procedencias	Machos		2,7454	0,6705	Nov. 04 - Sep 05

Tabla 39Captura (en N°) de individuos de jaiba registrados en los muestreos realizados a bordo de botes tramperos.

RECURSO	ANCUD		QUELLÓI	N	PTO. CHACABUCO		
RECURSO	Captura (N°)	%	Captura(N°)	%	Captura(N°)	%	
jaiba marmola	1953	79	3639	99	954	100	
jaiba mora	148	6	0	0	0	0	
jaiba peluda	59	2	0	0	0	0	
jaiba reina	253	10	46	1	0	0	
jaiba patuda	46	2	5	0	0	0	
Total	2459	100	3690	100	954	100	

Ancud (7 embarques), Quellón (5 embarques), Pto. Chacabuco (5 embarques)

Tabla 40Fauna acompañante (en número de individuos) registrada en los muestreos realizados a bordo de botes tramperos.

Taxa	Nombre común	Nombre científico		Zona e	studio
Taxa	Nombre comun	Nombre cientifico	Ancud	Quellón	Pto. Chacabuco
	Cangrejo	Taliepus dentatus			17
Crustáceos	Langostino chilote	Munida gregaria		1	6
Or a stace os	Araña de mar	Eurypodius latreillei		6	4
	Centolla	Lithodes santolla			5
Moluscos	Pulpo	Enteroctopus megalocyathus			2
IVIOIUSCOS	Jibia	Dosidicus gigas			1
	Caracoles	Nassarius gayi		84	
Equinodermos	Estrella de mar	Patiria obesa	2	1	3
Peces	Lenguados	Hippoglossina macrops			1
reces	Brotula	Salilota australis			1
Celenterados	Actinias	Anthothoe chilensis		1	
Otros	Corales	Lophogorgia platyclados			1
	Medusas				2
Número total Esp	ecies	•	1	5	11
Desembarque ja	ibas muestreado (t)		5,52	0,9	

Tabla 41

Número de muestreos con pesca por especie de jaiba, número de viajes en que se descartó una fracción de esa especie y proporción de viajes con descarte. Bahía de Ancud.

			Proporción de	
	N° muestreos	N° de viajes	viajes con	Intervalo de
Recurso	con pesca	con descarte	descarte	Confinaza [I.C.]
jaiba marmola	7	3	0,43	[0,0-0,8]
jaiba mora	3	3	1	1
jaiba peluda	4	2	0,50	[0,1-0,9]
jaiba reina	7	2	0,29	[0,0-0,6]
jaiba patuda	4	3	0,75	[0,4-1,0]

Tabla 42

Captura y descarte en número, por especie de jaiba capturada en los viajes muestreados.

	ANCUD			QUELLÓN			PTO. CHACABUCO			TOTAL		
RECURSO	Captura	Descarte	%D/C	Captura	Descarte	%D/C	Captura	Descarte	%D/C	Captura	Descarte	%D/C
jaiba marmola	1953	159	8%	3639	693	19%	954	438	46%	6546	1290	20%
jaiba mora	148	34	23%	0	0	-	C	0	•	148	34	23%
jaiba peluda	59	8	14%	0	0	-	C	0	-	59	8	14%
jaiba reina	253	65	26%	46	40	87%	C	0	-	299	105	35%
jaiba patuda	46	25	54%	5	0	0%	C	0	-	51	25	49%
N° MUESTRAS		7							5			

Tabla 43.

Tipo de integración de las empresas procesadoras.

Para abastecerse de jaibas o materia prima	% de plantas
Tiene flota artesanal	0
Tiene Flota industrial	0
Se abastece de terceros	100
Para vender el producto jaiba en el mercado nacional	%
Tiene oficina comercial propia	67
Externaliza la venta	33
Para vender el producto jaiba al extranjero	%
Tiene exportadora propia	100
Subcontrata servicio de exportación	0

Fuente: información generada por el proyecto

Tabla 44.Empresas procesadoras de la X Región y su participación en la producción en la elaboración de productos cuya materia prima es jaibas. 2004.

Plantas Elaboradoras de Jaibas	Participación
1. PESQUERA PALACIOS S.A.	68,7%
2. PACIFICO AUSTRAL, SOC. PESQUERA LTDA.	12,9%
3. SOC. PESQUERA SILGAR LTDA.	10,0%
4. YADRAN QUELLON S.A.	2,2%
5. TRANS ANTARTIC, PESQUERA LTDA.	2,0%
6. CONGELADOS MARINOS LTDA.	1,9%
7. TEKE LECAROS, JORGE ROLANDO	1,5%
8. ISLA DEL REY, PESQUERA S.A.	0,3%
9. SACRAMENTO, CONSERVERA S.A.	0,1%
10. PRODUCTOS DEL MAR ENSENADA CODIHUE LTDA.	0,1%
11. MAROA, S.I.C.	0,1%
12. CARDENAS AVENDAÑO, NESTOR CIRO	0,1%
13. INVEMAR, SOC. COMERCIAL LTDA.	0,0%
14. COMERCIAL ISLA GRANDE LTDA.	0,0%
15. MELO SOTO, MARITZA GLADIS	0,0%
16. HEIN CERNOCH, FELIX – PANGAL	0,0%
17. SACHO S.A.	0,0%
18. ALVAREZ CARCAMO, MARCELO ALEJANDRO	0,0%
19. SOC. PESQUERA EMAR LTDA.	0,0%
Total general	100,0%

Fuente : Sernapesca

Tabla 45Manejo de información por parte de los pescadores

Manejo de Información	SI (% de	NO (% de
	pescadores)	pescadores)
El nombre de las plantas que compran habitualmente	100	
jaibas		
El precio que paga cada planta	67	33
El precio de exportación		89
Los países a los cuales es vendido su producto		89
El precio que paga el consumidor final del producto fresco	11	89
o procesado (Ejm. cocido)		
El precio de playa que se paga en otras caletas	80	11
La diferencia de calidad de su producto respecto a otras	100	0
caletas		
Otros	0	0

Fuente: Información generada por el proyecto

Tabla 46Importancia de la jaiba en el portafolio de productos de las empresas procesadoras

Empresas Procesadoras/exportadoras	Importanciade jaibas* (N°)	Otros recursos objetivos de la empresa
Transantartic	10	Chorito-taquilla-navaja-navajuela-macha
SIC MAROA, LTDA	5	Erizo-raya-otros pescados-centolla
Marcelo Alvarez	3	Diversos moluscos-centolla
Comercial Isla Grande LTDA	1	Piure
Congelados Marinos LTDA	2	Macha
Néstor Ciro Cárdenas	2	Salmón ahumado-piure-pejerrey
La Caleta del Caleuche	1	Macha
Soc. Pesquera SILGAR LTDA	2	Erizo
PESCA CHILE S.A	8	Salmón-merluza- bacalao-congrio
Yadrán Quellón	4	Variados recursos

^{(*) :} Nivel de importancia de jaibas como materia prima respecto a otros recursos que procesa la empresa Fuente: Información generada por el proyecto

Tabla 47Procedencia del abastecimiento de materia prima

Empresas Procesadoras/exportadoras	Procedencia de la jaiba
Transantartic	Carelmapu
Pacific Austral	Ancud
SIC MAROA, LTDA	Quellón – Melinka
Marcelo Alvarez	Chonchi - Castro - Ancud
Comercial Isla Grande LTDA	Ancud
Congelados Marinos LTDA	Chiloé-Guaitecas
Néstor Ciro Cárdenas	Ancud
La Caleta del Caleuche	Bahía de Ancud
Soc. Pesquera SILGAR LTDA	Quellón, Dalcahue, Queilén, Carelmapu, Ancud
PESCA CHILE S.A	XI Región (Faena)
Yadrán Quellón	X y XI Región (Faena)

Fuente: Información generada por el proyecto

Tabla 48Precios pagados en playa (\$/kg) de recursos bentónicos por centro de monitoreo. X y XI Región. Nov 2004 - Octubre 2005

						Decima	Región							Į	Jndecim:	a Regiói	า	
Recurso	С	arelmap	ou		Dalcahue	Э		Ancud			Quellón		Puer	to Chaca	buco	N	/lelinka (^t)
	Min	Prom	Max	Min	Prom	Max	Min	Prom	Max	Min	Prom	Max	Min	Prom	Max	Min	Prom	Max
Jaiba buceo	200	200	200				150	198	300	200	214	250						
Jaiba trampa	200	200	200	155	155	155	140	140	200	140	172	220	173	173	173			
Erizo	230	250	270	160	161	200	180	170	220	71	207	400	60	68	88	140	163	190
Pepino de mar	100	108	120							180	180	180						
Almeja	200	212	300	90	141	220	100	159	250	80	157	280						
Cholga				70	100	110												
Choro zapato	300	400	500															
Culengue	200	260	300				180	185	190	150	238	300				150	186	250
Huepo							550	563	650									
Navajuela				240	240	240												
Ostra	300	389	600															
Tumbao							80	80	80									
Pulpo				1200	1200	1200	1000	1238	1500	1000	1206	1450				1000	1025	1200
Caracol negro							200	200	200									
Lapa										180	180	180				120	128	130
Picuyo							150	152	200	100	151	160	46	55	70			
Trumulco										100	100	100						
Picoroco	100	145	200															
Piure				350	350	350	52	59	64									
Pelillo				140	140	140												
Luga roja				170	220	220	160	179	210	50	183	190				42	90	180
Luga negra	65	67	70				50	155	200	40	57	230				42	137	210

^(*) Puerto que fue considerado como de referencia dentro de la XI Región

Tabla 49Parámetros de selectividad de machos y hembras. X Región.

Parámetro	Macho	Hembra
Coeficiente de posición	-11,451 (0.0541)	-15,659 (0.1108)
Pendiente	0, 096 (0.0004)	0,149 (0.001)
Correlación	0,989	0,993
Tamaño muestra	6994	4610

Nota: Error estándar entre paréntesis

Tabla 50PBR estimados desde las curvas de rendimiento y biomasa por recluta. X Región

PBR	Macho	Y/R	BD/R	Hembra	Y/R	BD/R
Fact	0,2185	116,92	551,11	0,3151	44,914	92,405
$F_{0,1}$	0,2134	116,41	544,81	0,2572	43,030	109,27
F_{max}	0,4896	128,11	270,27	0,8213	48,400	38,420
F _{40%}	0,2085	115,70	553,94	0,2159	40,873	124,88

Tabla 51Parámetros de selectividad de machos y hembras. XI Región.

Parámetro	Macho	Hembra
Coeficiente de posición	-19,621 (0,131)	-21,482 (0,216)
Pendiente	0,147 (0.001)	0,169 (0.002)
Correlación	0,996	0,997
Tamaño muestra	5087	2568

Nota: Error estándar entre paréntesis

Tabla 52PBR estimados desde lasa curvas de rendimiento y biomasa por recluta.
XI Región.

PBR	Macho	Y/R	BD/R	Hembra	Y/R	BD/R
Fact	0,3987	105,03	396,42	0,2314	31,897	200,48
$F_{0,1}$	0,2536	96,720	510,58	0,4177	39,837	158,50
F_{max}	0,8444	109,37	247,25		_	
F _{40%}	0,3139	101,50	451,74	0,7246	44,149	123,13

Tabla 53Temas de interés planteados por los usuarios de la pesquería de jaibas de las Regiones X y XI.

Categoria	Tema planteado	Estrato
Regulatorios	Restricción del acceso a la pesquería	Pescador
	Regulación del esfuerzo de pesca	Pescador
	Identificación del universo de jaiberos que ejercen la actividad	Pescador, Comprador, Planta procesadora
	Cierre de áreas de pesca por algunos períodos (rotación de áreas)	Pescador
	Reducción de la talla mínima legal de captura (TML)	Pescador, Comprador
	Mayor fiscalización al momento del desembarques	Comprador
	Establecer una veda estacional cuando la jaiba entra en periodo de desove	Comprador
	Mayor fiscalización en talla y hembras oviferas en los centros de desembarques	Planta procesadora
	Evaluar actual Talla Mínima Legal, sin comprometer conservación del recurso	Planta procesadora
Pesca	Problemas en la extracción de tallas pequeñas	Pescador
	Realizar Pesca de Investigación	Planta procesadora
Recurso	Falta de conocimiento sobre el recurso	Pescador
	Importancia de entregar información de la pesquería	Pescador
Económico	Los intermediarios manejan el precio del recurso	Pescador
	Negociación del recurso en forma individual	Pescador
	Pocos compradores en playa	Pescador

ANEXOS

ANEXO 1

FORMULARIOS RECOPILACIÓN DE INFORMACIÓN

REGISTRO DIARIO DE CAPTURAS

PROYECTO SEGUIMIENTO PESQUERIAS BENTONICAS

REGIO			CENTRO DE M	IUESTE	REO:										MES				AÑO :		HOJA :	
Nº	TIPO	CODIGO	MATRICULA		ZARPE			ARRIBO)		CAPTU	RAS				ACT	IVIDAD		CODIGO	NOMBRE	PRECI	0
UEST.	EMBAR.	EMBARCACION	Y NOMBRE EMB.	DIA	MES	HORA	DIA	MES	HORA	PROCEDENCIA	ESPECIE	VOLUMEN	U	D	ARTE	Nº	HORAS	PROF.	BUZO	DEL BUZO	P. VENTA	ι
																						ŀ
																						l
																						ŀ
																						ł
																						l
																						Ì
																						Ť
																						Ī
																						Ī
po de	embar : A		ue sólo transporta re en 1 día de operaci				1= Unida	ad; 2 = S		(U): Kilo; 4 = Malla; = Bandeja; 8 = B	Bolsa	Arte: 1 = Buceo 7 = Línea 10 = Espir	de ma							Nombre Muestreador :		_
	barcación		con más de 1 día de y de otra embarcac				12= Des		o; 13 = R	11=cientos ellenos; 14= Plat	o	N° = Número d Horas = Tiempo							etc.	Observaciones :		_
		rcación no registra ue entregan recur	do sos a plantas proces	adoras.				2	= Fresco			Prof = Profundio	dad en	metro	os							

Nº MUESTREO

MUESTREO BIOLOGICO

INSTITU FOME PESQL	NTO		PR	OYE	СТ	0	SE	GUII	MIE	EN ⁻	TO -	UN	IDA	D I	DE	PES	SQL	JEI	RIA	S E	BEN	TOI	NIC	CAS	}							
ı	REGIO	N					PU	JERT	o								RE	ECL	JRS	60						ı	PRC	CE	DE	NCI	Α	
	FECH/	1																									1					
AÑO	MES	DIA					Е	MBA	ARC	AC	CION									DE	STIN	10										
1		l																														
		Р	EGION	l					_				1		FE	CHA								-					1			
		ľ	Nº	PUI	ERT	0	RE	CURS	0 1	PRO	OCEDEN	ICIA	Αİ	ÑΟ	М		DI	Α	Е	MBA	RCA	CION	١	D		PE	so					
			1	l								1		<u> </u>			1										<u> </u>	l				
		Ľ	1 2	3	4	5	6	7	8	9	10 11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28				
LAF	RGO	Al	NCHO			D. C.		PES	0		QL	JELA				LAR	:GO			ANC	СНО		SEXO	D. C.		PE	so			QU	ELA	
29 30	31 32	33 3	4 35			38	39	40	41	42	43 44	45	46		29	30	31	32	33	34	35		37	38	39	40	41	42	43	44	45	4
ı	 I I		1	I				 	ı			1	1				1								- ا		I	l .		<u> </u>	1	ı
	 I I		i	I				 I I	i		1	i	ı			 	i								1	ı	i	ı		ı	ı	1
ı	1 1	ı	1	,				1 1	ı		1	i	1			ı ı	1				1 1					1	ı	ı			ı	1
ı	1 1	ı	1	,				1 1	ı		1	i	1			ı ı	1				1 1					1	ı	ı			ı	1
			1						1			ì	1			1	i										i	1			ì	1
			1						1			ì	1			1	i										i	1			ì	1
-			1						1			i	ı				1										ı				ı	
		i	1						1			1	1				1										1	1			1	
			1														1															
			1														1															
				<u>.</u>																												
				<u>.</u>																												
								<u> </u>				1	l																			
	<u> </u>							1 1				<u> </u>	<u> </u>									1										
	<u> </u>			!							1	1					1										l	<u> </u>		<u> </u>	<u> </u>	
	I I .		i								- 1		<u> </u>	ļ	<u> </u>												<u> </u>	FOI	RM. N	√° 39 .	/ MR	上
INST	RUCCI	ONE	S:											EXC							A D						DE:	STI	0	(D))	
b)_ <	92	19	a)		Ab	dor	nen	Hem	nbra	as		1			= 1 : = :						RAZ C.)				C	Con		dust no e		= 1 esco) =	2
		T.	<u>~</u>			\	(\searrow	/						ífera				В	and	0 =	1										
OF			9				_					Ind	eteri	min	ado	= 0)			Duro) = 2	2										
4 H		y	-		Ab	odo	mer	n Mad	cho	s																						
	go cefa cho cefa						n	1																								
υ) Ail	JIO CER	alUtUli	acico			\	1		•																							
OBSE	RVAC	CIONE	ES:																													

DETERMINACIÓN TAMAÑOS DE MUESTRA

Determinación Tamaños de Muestra

1. Estructura de talla y talla media

En **Figuras 1** y **2**, se muestra el comportamiento del índice de error (IE) de la estructura de tallas y del coeficiente de variación (CV) de la talla media, para jaiba marmola frente a diferentes número de viajes muestreados, por procedencia. El patrón de disminución observado en el IE fue muy similar para las diferentes procedencias analizadas. Se registra una importante declinación en el IE de la estructura de tallas al aumentar de dos a seis los viajes muestreados, variando el índice entre 0,05 y 0,06 para las diferentes procedencias, nivel que se reduce al rango de 0,04-0,05 si la muestra se incrementa a ocho viajes.

La estimación de la talla media, presenta CV inferiores al 4% para los diferentes tamaños de muestra simulados y para la totalidad de procedencias analizada (**Fig. 1** y **2**). Para el caso de la captura de jaiba marmola mediante trampas, se observa una alta precisión en la estimación de este parámetro que se refleja en CV por lo general inferiores al 2%.

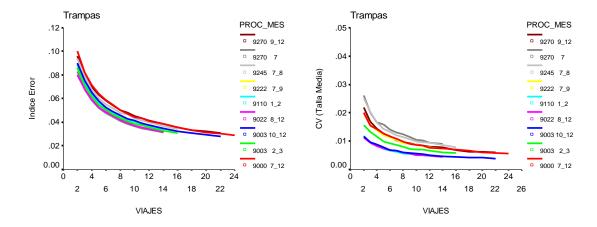


Figura 1. Error en la estimación de la composición de tallas y de longitudes medias de jaiba marmola extraída con trampa por procedencia, considerando diferentes de tamaños de muestra de viajes.

9270 = Canal Yelcho 9022 = Pta. Corona 9110 = Pta. Chocoi

9245 = Isla Laitec 9003 = Bahía Ancud

9222 =Isla Coldita 9000 = Ahui

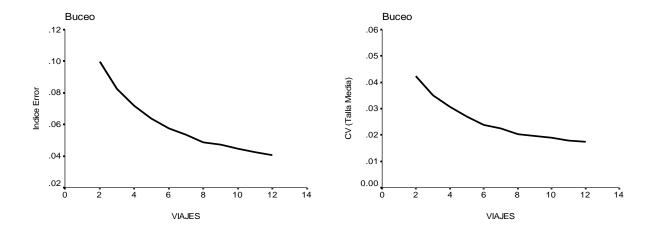


Figura 2. Error en la estimación de la composición de tallas y de longitudes medias de jaiba marmola extraída por buceo desde Isla Laitec, considerando diferentes de tamaños de muestra de viajes.

2. Relación longitud-peso y peso medio por ejemplar

En general, hubo una gran precisión o exactitud en la estimación de los parámetros de la relación longitud-peso, lo que se ve reflejado en el estabilidad que presenta el coeficiente de determinación (r^2) por procedencia para todos los tamaños de muestras analizados. El estimado del parámetro "b" se comportó levemente más preciso a medida que el tamaño de la muestra aumentaba y presenta pequeñas variaciones a partir de una muestra de 20 ejemplares por categoría talla. Lo anterior tiene una incidencia directa en la estimación del peso medio, lo que se ve reflejado en bajos coeficientes de variación por procedencias (**Fig. 3**).

Los parámetros estimados presentan un error bajo, es así que el Coeficiente de Variación de "b" es inferior al 2% para muestras de sólo tres ejemplares por intervalo de talla y continúa disminuyendo cuando ésta se incrementa. Por su parte, la predicción del peso medio de los ejemplares en la captura muestra en la mayoría de los casos CV también inferiores al 2% (**Fig. 3**).

Figura. 3. Coeficiente de variación del parámetro b de la relación peso-talla, coeficiente de determinación y coeficiente de variación de la estimación de los pesos medios de jaiba marmola, por procedencia. (9270= Canal Yelcho; 9245= Isla Laitec).

De acuerdo a estos resultados, para ajustar el modelo que relaciona la longitud con el peso, se requieren tamaños de muestra en torno a los 120 ejemplares, lo anterior teniendo en consideración una selección aleatoria de cinco ejemplares por categoría de talla de 3 mm.

ENCUESTA A PLANTAS DE PROCESO (TODOS LOS DATOS ENTREGADOS TIENEN CARÁCTER CONFIDENCIAL)

Nombre de la empresa	
Nombre y cargo del entrevistado	
Localidad/ ciudad /región	
Fecha encuesta	
Fono de contacto	
Página Web	

I.- ASPECTOS GENERALES DE LA EMPRESA

1.- Propiedad de la empresa (%)

Chilena	Extranjera/país

2. – Tipo de producto o servicio que ofrece al mercado (%)

Producto propio	Maquila a otras empresas	Otros

3. Número de establecimientos (plantas) que posee la empresa para procesar la jaiba

Número/ciudad	Número/ciudad	Número/ciudad

4.- Tipo de integración de la empresa (señalar el tipo de integración con las distintas actividades)

X	Para abastecerse de jaibas o materia prima								
	Tiene flota artesanal								
	Tiene Flota industrial								
	Se abastece de terceros								
	Otros								
X	Para vender el producto jaiba en el mercado nacional								
	Tiene oficina comercial propia								
	Externaliza la venta								
Х	Para vender el producto jaiba al extranjero								
	Tiene exportadora propia								
	Subcontrata servicio de exportación								
	Otros								

II. ABASTECIMIENTO DE MATERIA PRIMA

1. Tipo de medios que utiliza para abastecerse de Materia Prima

Р	Posee pontón	Posee embarcaciones	Posee camiones de	Todo lo asume el	Otros
		De acarreo a la planta	Transporte a la planta	tercero o proveedor	

2. Tipo de apoyo o habilitación que Ud., realiza a los pescadores artesanales que le abastecen de materia prima (X).

ſ	Ninguno	Combustibles	Víveres	Artes	Motores	Carnada	Efectivo	Otros
				de pesca	y equipos			
Ī								

3. Señale la zona de procedencia de la materia prima que Ud. compra frecuentemente (X)

	Region/Zona	Region/Zona	Region/Zona	Region/Zona	Region/Zona
Ī					

4. Meses que tiene mayor abastecimiento de Materia Prima (X)

Е	F	М	Α	М	J	J	Α	S	0	N	D

5. Mencione motivos que hacen disminuir su abastecimiento en otros meses (X)

Disminución de los rendimientos de captura	Escasez de pescadores que abastecen de MP	Tallas inapropiadas para el mercado	Dificultad para proveer de insumos a los pescadores	Bajos precios del mercado internacional	Cambia a otro recurso de mayor atractivo económico	Veda s	Otros

6. Especies de Jaibas que son su objetivo de compra (%)

Marmola -Cancer edwardsii-	Limón -Cancer porteri-	Reina -Cancer coronatus-	Remadora -Ovalipes trimaculatus-	Mora -Homalaspis plana-	Panchote o cangrejo -Taliepus dentatus-	Patuda -Taliepus marginatus-	Peluda o pachona -Cancer setosus-

7. Razones por las cuales estas especies son mayormente requeridas (X).

MOTIVOS	Χ
a. Mayor abundancia	
b. Tallas apropiadas para el mercado	
c. Precios de mercado comparativamente mayores	
d. Mantiene una mejor calidad antes de ser procesada	
e. otros	

8. Indique precios (\$/unidad) actuales de materia prima "puesto en planta" según especie.

Marmola	Limón	Reina	Remadora	Mora	Panchote	Patuda	Peluda o
-Cancer edwardsii-	-Cancer porteri-	-Cancer coronatus-	-Ovalipes trimaculatus-	-Homalaspis plana-	o cangrejo -Taliepus dentatus-	-Taliepus marginatus-	pachona -Cancer setosus-

9. Factores que hacen aumentar el precio de la especie objetivo comprada a terceros.

X	FACTORES
	Menor abundancia de la especie objetivo
	Orientación extractiva de la flota hacia otras especies
	Mayor rendimiento en carne
	Aumento del precio en los mercados internacionales
	Aumento de los costos de extracción por distancia o insumos
	Otros

III.- PRODUCCIÓN

1. Que lugar ocupa la jaiba en importancia económica para su negocio y que recursos le anteceden.

Lugar	1°	2°	3°	4°	5°	
Nombre recurso						Jaibas

2. Productos objetivos de su empresa (%)

	Congelados			Fresco Refrigerado			Otros				
Entero	Pinzas	Carne	Otros	Entero	Pinzas	Carne	Otros	Entero	Pinzas	Carne	Otros

3. Indique las causales de orientarse a estos productos

	Son bien	Tienen un	Tienen un corto	Experiencia	Otros
Productos	reconocidos por	bajo costo de	tiempo de	adquirida por	
	el mercado	manufactura	procesamiento	la empresa	
1.					
2.					
3.					

4. Evolución	del	rendimiento	de	materia	prima	por	tipo	de	producto	en	los	últimos
años tres año	os											

PRODUCTO	2003 (%)	2005 (%)
Congelados		
Fresco-refrigerados		
Otros		

5. Variación de los costos de producto terminado de jaibas en los últimos 3 años considerando el recurso y producto principal. (Señale la unidad de costo: kilo, caja, otros)

Recurso/ producto	Valores 2003-2005 (\$ ó USD/unidad, kg, cajas, latas, bolsas u otros)
1.	
2.	
3.	

6. Variación del costo de maquila de jaibas en los últimos 3 años, considerando el principal producto.

Recurso/ producto	Valores 2003-2005 (\$ ó USD/unidad, kg, cajas, latas, bolsas u otros)
1.	
2.	
3.	

IV.- COMERCIALIZACIÓN

1. Señale la participación (%) del mercado al que son vendidos los productos elaborados a partir de jaibas.

LINEA	MERCADO INTERNO	MERCADO EXTERNO
ELABORACIÓN	(%/lugar)	(%/país)
Congelado		
Fresco-refrigerado		
Otros		

2.	Indique el	l nombre	de la	empresa	exportadora	de sus	productos
----	------------	----------	-------	---------	-------------	--------	-----------

3. Reacción ante efectos negativos del precio en el mercado externo (X)

Acumula	Baja la	Busca	Reorienta	Se reorienta	Disminuye	Otros
stock	Producción	otros	Líneas	a otros	el precio	
		mercados	proceso	recursos	de materia prima	

4. Indique especie de jaiba chilena de mayor aceptación en el mercado internacional (X)

Marmola -Cancer edwardsii-	Limón -Cancer porteri-	Reina -Cancer coronatus-	Remadora -Ovalipes trimaculatus-	Mora -Homalaspis plana-	Panchote o cangrejo -Taliepus dentatus-	Patuda -Taliepus marginatus-	Peluda o pachona - Cancer setosus-

5. Mencione si existe competencia de productos sustitutos en los mercados externos?

Sustituto 1/origen	Sustituto 2/origen	Sustituto 3/origen	No hay sustitutos

V. ASPECTOS GENERALES

- Considera adecuado el actual nivel de materia prima disponible para el negocio de la jaiba?.
- 2. ¿Qué medida administrativa recomendaría para ser implementada por la autoridad pesquera?.
- 3. Del punto de vista del mercado externo... ¿Cuales son las principales dificultades que tiene para colocar el producto (aranceles, exigencias de calidad, otros)?.
- 4. ¿Cuál es su apreciación acerca del futuro de la exportación chilena de jaibas?.
- 5. ¿Cuales son las principales dificultades a las cuales se enfrenta Ud. en la comercialización de sus productos en el mercado interno. ¿Ve proyección en este sentido?.

ENCUESTA A COMPRADORES DE JAIBAS

Centro de desembarque		
Nombre Entrevistado		
Tipo Proveedor (x)	Comerciante	Armador
Encuestador		
Fecha de encuesta		

I. ABASTECIMIENTO DE MATERIA PRIMA

1. Indique los meses en que su volumen de abastecimiento de jaibas es de un nivel medio-alto (x).

Ε	F	М	Α	М	J	J	Α	S	0	N	D

2. Razones por las cuales su abastecimiento es bajo en otros meses (X)

Disminución de los rendimientos de captura	Escasez de pescadores que abastecen de MP	Tallas inapropiadas para el mercado	Dificultad para proveer de insumos a los pescadores	Bajos precios pagados por el mercado	Cambia a otro recurso de mayor atractivo económico	Vedas	Otros

3. Recursos pesqueros que tienen para Ud. un mayor atractivo económico que la jaiba (X). (Señale el lugar de importancia que ocupa la jaiba en su actividad)

Recurso 1	Recurso 2	Recurso 3	Recurso 4	Recurso 5	
					Jaibas

4. Especies de Jaibas que son su objetivo de compra (%)

Marmola -Cancer edwardsii-	Limón -Cancer porteri-	Reina -Cancer coronatus-	Remadora -Ovalipes trimaculatus-	Mora -Homalaspis plana-	Panchote o cangrejo - Taliepus dentatus-	Patuda - <i>Taliepus</i> marginatus-	Peluda o pachona -Cancer setosus-

5. Razones por las cuales Ud., requiere estas especies (X).

MOTIVOS	Х
a. Mayor abundancia	
b. Tallas apropiadas para el mercado	
c. Precios de mercado comparativamente mayores	
d. Mantiene una mejor calidad antes de ser vendida	
e. otros	

6. Señale la zona de procedencia de la materia prima que Ud. compra frecuentemente (X)

Región/Zona	Región/Zona	Región/Zona	Región/Zona	Región/Zona

7. Tipo de compromisos **"previos"** con los pescadores artesanales para abastecerse de materia prima (X). Responda solo si es proveedor

Compromisos previos	Χ
Ningún compromiso	
Precios predefinidos	
Volumen definido de entrega	
Exclusividad de entrega	
Cierta Frecuencia de entrega	
Habilitación Insumos operación	
Una especie determinada	
Un tamaño determinado	
Pago al contado	
Pago al crédito	
Otros	

8. De existir apoyo o habilitación a los pescadores, indique a que tipo se refiere(X).

Ninguno	Combustibles	Víveres	Artes de pesca	Motores y equipos	Carnada	Dinero efectivo	Otros

9. Cantidad aproximada de jaibas que compra diariamente en los distintos puntos de abastecimiento

Kilos/unidades/cajas

10. Medios de operación que usa frecuentemente (X)

MEDIOS	Propia	Externa	No usa
a. Embarcaciones para extraer el recurso			
b. Pontón para faenas de pesca			
c. Embarcaciones de acarreo			
d. Cámara de Mantención frigorífica			
e. Cámara de hielo			
f. Camiones de transporte para la distribución del producto			
g. Otros			

11. Indique precios (\$/unidad) actuales de materia prima en playa, según especie que Ud., compra.

Marmola -Cancer edwardsii-	Limón -Cancer porteri-	Reina -Cancer coronatus-	Remadora -Ovalipes trimaculatus-	Mora -Homalaspis plana-	Panchote o cangrejo -Taliepus dentatus-	Patuda -Taliepus marginatus-	Peluda o pachona - Cancer setosus-

12. Factores que inciden fuertemente en el aumento del precio de la especie objetivo

Χ	FACTORES						
	Menor abundancia de la especie objetivo						
	Orientación extractiva de la flota hacia otras especies						
	Mayor rendimiento en carne						
	Aumento del precio pagado por el mercado (planta y/o en fresco)						
	Aumento de los costos de extracción de la flota por distancia o insumos						
	Otros						

II. ENTREGA DE RECURSO Y/O MATERIA PRIMA

1. Indique el mercado al cual entrega las jaibas (%).

Planta de proceso	Mercado y/o ferias	Restoranes	Supermercados	Consumidor	Otros
	mayoristas regionales			final	

2. Identifique los mercados a los cuales provee de jaibas

NOMBRE	Ciudad	Región
1.		
2.		
3.		
4.		
5.		

3. Indique su forma de trabajar con las plantas de proceso (X)

Tiene compromisos de exclusividad con alguna empresa procesadora	Opera en forma independiente

4. Indique precios (\$/unidad) actuales de materia prima "puesto en planta", según especie. Señale a que unidad se refiere. Si es necesario, explique.

Marmola -Cancer edwardsii-	Limón -Cancer porteri-	Reina -Cancer coronatus-	Remadora -Ovalipes trimaculatus-	Mora -Homalaspis plana-	Panchote o cangrejo -Taliepus dentatus-	Patuda -Taliepus marginatus-	Peluda o pachona - Cancer setosus-

5. Factores que hacen aumentar el precio de la especie objetivo comprada a terceros.

X	FACTORES
	Menor abundancia de la especie objetivo
	Orientación extractiva de la flota hacia otras especies
	Mayor rendimiento en carne
	Aumento del precio en los mercados internacionales
	Aumento de los costos de extracción por distancia o insumos
	Otros

6. Indique el precio (aprox.) de jaibas puesto en planta en los últimos 3 años considerando la especie y producto (entero, pinzas, carne, otros), si corresponde.

Especie / producto	Valores 2003-2004-2005				
	(\$ /unidad, kg, cajas, latas, mallas u otros)				
1.					
2.					
3.					

7. Tratamiento que le efectúa a la captura previa venta al mercado (X).

MANIPULACIÓN DEL RECURSO JAIBA	Χ
a. Ninguna	
b. Mantención refrigerada	
c. Realiza clasificación por tamaño	
d. Realiza clasificación por especie	
e. Desmenuzado en pinzas	
f. Desmenuzado en carne	
g. Envasado	
h. Otros	

III. ASPECTOS GENERALES

- 1. Considera adecuado el actual nivel de materia prima disponible para el negocio de la jaiba?.
- 2. ¿Qué medida administrativa recomendaría para ser implementada por la autoridad pesquera?.
- 3. Del punto de vista de su mercado objetivo ... ¿Cuales son las principales dificultades que tiene para colocar el producto?.
- Exigencias de calidad de la planta ¿Cuáles?.
- Mucha competencia ¿Cuántos compradores?.
- Insuficiente capital de trabajo para operar y ser competitivo?
- Poca demanda ¿Por qué?.
- Imposibilidad de un abastecimiento continuo?.
- 4. ¿Cuál es su apreciación acerca del futuro del negocio de la jaiba?. ¿Ve proyección en sus mercados objetivos?.

Δ	NΙ	EXO	1
\boldsymbol{H}	ΙV	ヒヘい	4

DVD "ACTIVIDAD EXTRACTIVA, DESEMBARQUES Y MUESTREOS DE LA PESQUERÍA DE JAIBAS"

ANEXO 5

CD BASE DE DATOS

Relaciones tallas-pesos por procedencia y resultados de los análisis de las covarianzas.

a. Relaciones tallas pesos por procedencia

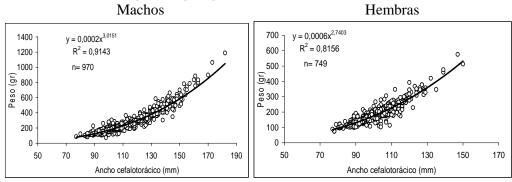


Figura 1. Relación talla peso de jaiba marmola. Procedencia Isla Cochino. – Puerto Ancud. Período febrero - octubre 2005.

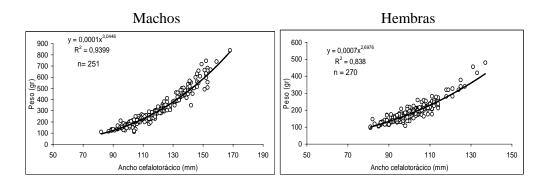


Figura 2. Relación talla peso de jaiba marmola. Procedencia Punta Corona – Puerto Ancud. Período noviembre 2004 – junio 2005.

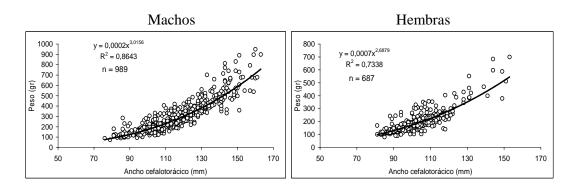


Figura 3. Relación talla peso de jaiba marmola. Procedencia Bahía Ancud – Puerto Ancud. Período noviembre 2004 – septiembre 2005.

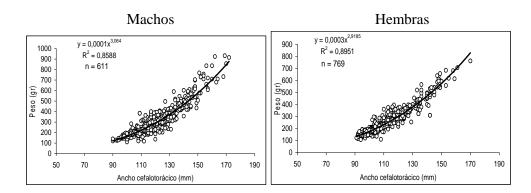


Figura 4. Relación talla peso de jaiba marmola. Procedencia Calén – Puerto Dalcahue. Período noviembre 2004 - julio 2005.

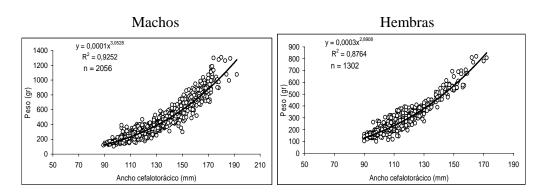


Figura 5. Relación talla peso de jaiba marmola. Procedencia Rilán - Puerto Dalcahue. Período noviembre 2004 – septiembre 2005.

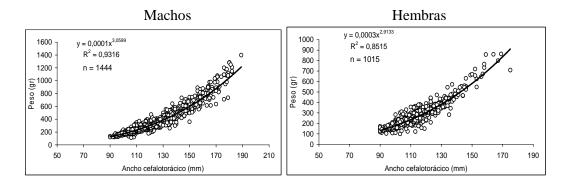


Figura 6. Relación talla peso de jaiba marmola. Procedencia Curaco de Vélez – Puerto Dalcahue. Periodo noviembre 2004 – agosto 2005.

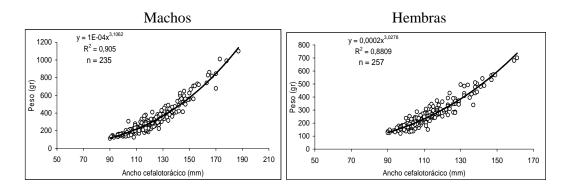


Figura 7. Relación talla peso de jaiba marmola. Procedencia Isla Chelín - Puerto Dalcahue. Periodo noviembre 2004 - abril 2005.

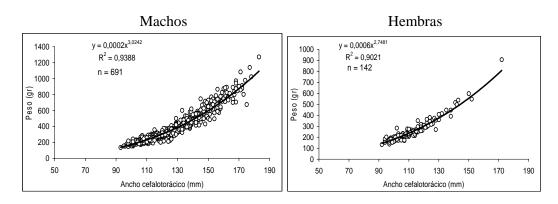


Figura 8 Relación talla peso de jaiba marmola. Procedencia Huyar - Puerto Dalcahue. Periodo mayo - septiembre 2005.

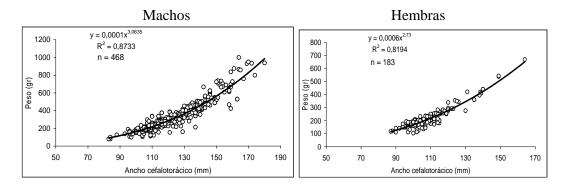


Figura 9. Relación talla peso de jaiba marmola. Procedencia Curanue - Puerto Quellón. Período junio y julio 2005.

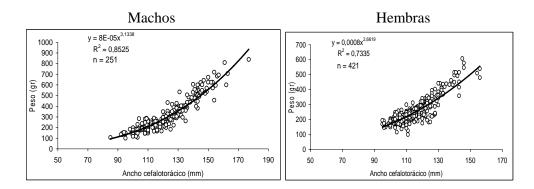


Figura 10. Relación talla peso de jaiba marmola. Procedencia Isla Traiguen. Puerto Quellón. Periodo noviembre 2004 y febrero 2005.

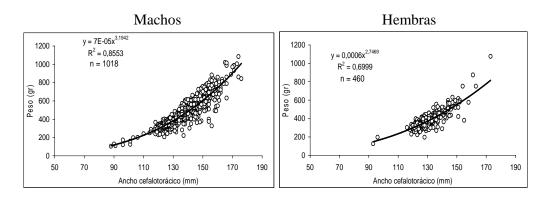


Figura 11. Relación talla peso de jaiba marmola. Procedencia Islas Costas - Puerto Chacabuco. Período noviembre 2004 –octubre 2005.

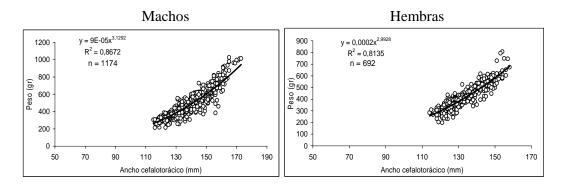


Figura 12. Relación talla peso de jaiba marmola. Procedencia Pilcomayo - Puerto Chacabuco. Período diciembre 2004 – marzo 2005.

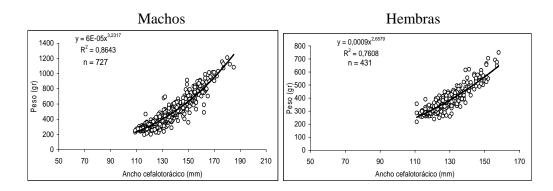


Figura 13. Relación talla peso de jaiba marmola. Procedencia Corriente La Vaca. Puerto Chacabuco. Período diciembre 2004 – octubre 2005.

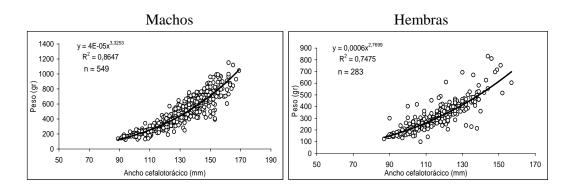


Figura 14. Relación talla peso de jaiba peluda: Principales procedencias. Puerto Ancud. Período diciembre 2004 - octubre 2005.

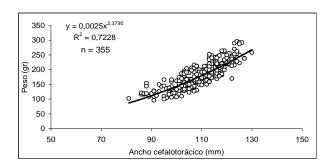


Figura 15. Relación talla peso de jaiba reina machos: Principales procedencias - Puerto Ancud. Período noviembre 2004 - octubre 2005.

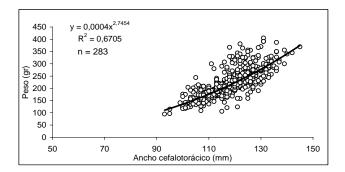


Figura 16. Relación talla peso de jaiba reina machos. Principales procedencias Puerto Dalcahue. Período noviembre 2004 - septiembre 2005.

b. Resultados de los análisis de las covarianzas.

Tabla 1

a. Resultados de los ajustes del modelo de análisis de covarianza utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso entre machos y hembras de jaiba marmola desembarcada en Ancud. b. Resultado del ajuste del modelo utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso, entre sexos y procedencias.

(a)

Procedencia:	Isla Cochino			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-8.7359	0.1364	-64.0565	0
Intercepto diferencial	1.282	0.2662	4.8149	0
Pendiente	3.0151	0.0289	104.4768	0
Pendiente diferencial	-0.2748	0.0573	-4.7947	0
Procedencia:	Punta Corona			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-8.8825	0.2236	-39.7213	0
Intercepto diferencial	1.6375	0.4126	3.9685	0.0001
Pendiente	3.0446	0.047	64.8072	0
Pendiente diferencial	-0.347	0.0887	-3.9128	0.0001
Procedencia:	Bahía Ancud			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-8.7312	0.174	-50.1774	0
Intercepto diferencial	1.5112	0.3442	4.3909	0
Pendiente	3.0156	0.0371	81.3462	0
Pendiente diferencial	-0.3277	0.0743	-4.4113	0

(b)

Suma de cuadrados Tipo II	I				
G.L.		Sum Cuad	Cuad Med	Valor f	Valor p
Procedencia	2	0.0114	0.0057	0.31	0.7346325
Sexo	1	0.9488	0.9488	51.38	0
Longitud	1	291.1469	291.1469	15766.97	0
Longitud*Procedencia	2	0.0111	0.0055	0.3	0.7413051
Longitud*Sexo	1	0.9463	0.9463	51.25	0
Residuals	3908	72.1636	0.0185		

Tabla 2.

a. Resultados de los ajustes del modelo de análisis de covarianza utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso entre machos y hembras de jaiba marmola desembarcada en Dalcahue. b. Resultado del ajuste del modelo utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso, entre sexos y procedencias.

(a)

Procedencia:	Calén			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-8.9946	0.2062	-43.6191	0
Intercepto diferencial	0.7263	0.2881	2.521	0.0118
Pendiente	3.064	0.0431	71.0226	0
Pendiente diferencial	-0.1455	0.0607	-2.3949	0.0168
Procedencia:	Rilán			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-8.899	0.0894	-99.5494	0
Intercepto diferencial	0.7639	0.1746	4.3743	0
Pendiente	3.0528	0.0185	164.7261	0
Pendiente diferencial	-0.162	0.0369	-4.3939	0
Procedencia:	Curaco de Vé	lez		
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-8.9376	0.107	-83.557	0
Intercepto diferencial	0.7057	0.2055	3.4345	0.0006
Pendiente	3.0599	0.0222	137.7784	0
Pendiente diferencial	-0.1466	0.0435	-3.3739	0.0008
Procedencia:	Isla Chelín			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-9.2121	0.2934	-31.3974	0
Intercepto diferencial	0.4279	0.461	0.9283	0.3537
Pendiente	3.1062			0
Pendiente diferencial	-0.0784	0.0972	-0.8064	0.4204
Procedencia:	Huyar			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-8.7561	0.1401	-62.497	0
Intercepto diferencial	1.3064	0.4121	3.1703	0.0016
Pendiente	3.0242	0.029	104.1718	0
Pendiente diferencial	-0.276	0.0872	-3.1651	0.0016

(b)

Suma de cuadrados Tipo II	I				
G.L.		Sum Cuad	Cuad Med	Valor f	Valor p
Procedencia	4	0.0514	0.0128	0.87	0.4788671
Sexo	1	0.6163	0.6163	41.92	0
Longitud	1	683.5557	683.5557	46498.62	0
Longitud*Procedencia	4	0.0509	0.0127	0.87	0.4839793
Longitud*Sexo	1	0.5949	0.5949	40.47	0
Residuals	8510	125.1017	0.0147		

Tabla 3.

a. Resultados de los ajustes del modelo de análisis de covarianza utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso entre machos y hembras de jaiba marmola desembarcada en Quellón. b. Resultado del ajuste del modelo utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso, entre sexos y procedencias.

(a)

Procedencia:	Curamue			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-9.0136	0.2478	-36.3767	0
Intercepto diferencial	1.5719	0.5738	2.7393	0.0063
Pendiente	3.0635	0.0516	59.4209	0
Pendiente diferencial	-0.3335	0.1219	-2.7365	0.0064
Procedencia:	Isla Traiguén			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-9.3804	0.359	-26.1265	0
Intercepto diferencial	2.2602	0.5364	4.214	0
Pendiente	3.1338	0.0747	41.9347	0
Pendiente diferencial	-0.4719	0.1125	-4.1939	0

(b)

Suma de cuadrados Tipo III								
G.	L.	Sum Cuad	Cuad Med	Valor f	Valor p			
Procedencia	1	0.0012	0.0012	0.051	0.8208426			
Sexo	1	0.5108	0.5108	22.217	0.0000027			
Longitud	1	125.1943	125.1943	5445.742	0			
Longitud*Procedencia	1	0.0017	0.0017	0.075	0.7835484			
Longitud*Sexo	1	0.5069	0.5069	22.049	0.0000029			
Residuals	1317	30.277	0.023					

Tabla 4.

a. Resultados de los ajustes del modelo de análisis de covarianza utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso entre machos y hembras de jaiba marmola desembarcada en Puerto Chacabuco. b. Resultado del ajuste del modelo utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso, entre sexos y procedencias.

(a)

Procedencia:	Islas Costas			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-9.5992	0.1978	-48.518	0
Intercepto diferencial	2.147	0.4755	4.5152	0
Pendiente	3.1942	0.0403	79.2759	0
Pendiente diferencial	-0.4473	0.0975	-4.5888	0
Procedencia:	Pilcomayo			
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-9.2757	0.1706	-54.3804	0
Intercepto diferencial	0.6483	0.3275	1.9792	0.0479
Pendiente	3.1292	0.0348	89.951	0
Pendiente diferencial	-0.1363	0.0671	-2.031	0.0424
Procedencia:	Corriente La \	/aca		
Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-9.7386	0.2154	-45.2215	0
Intercepto diferencial	2.7539	0.4656	5.915	0
Pendiente	3.2317	0.044	73.4434	0
Pendiente diferencial	-0.5738	0.0958	-5.9902	0

(b)

Suma de cuadrados Tipo III								
	G.L.	Sum Cuad	Cuad Med	Valor f	Valor p			
Procedencia	2	0.003	0.0015	0.13	0.874233			
Sexo	1	0.5567	0.5567	49.16	0			
Longitud	1	173.9817	173.9817	15363.06	0			
Longitud*Procedencia	2	0.0044	0.0022	0.19	0.8238993			
Longitud*Sexo	1	0.5752	0.5752	50.79	0			
Residuals	4494	50.8931	0.0113					

Tabla 5

Resultados de los ajustes del modelo de análisis de covarianza utilizado para determinar diferencias significativas entre los parámetros de la relación talla – peso entre machos y hembras de jaiba peluda desembarcada en Ancud.

Coeficientes	Valor	Err Std	Valor t	Valor p
Intercepto	-10.0966	0.2836	-35.5976	0
Intercepto diferencial	2.6396	0.5119	5.1565	0
Pendiente	3.3253	0.0584	56.9662	0
Pendiente diferencial	-0.5553	0.1072	-5.1791	0

DESCRIPCIÓN TAXONOMICA DEL MATERIAL COLECTADO.

DESCRIPCIÓN TAXONÓMICA DEL MATERIAL COLECTADO

1. Material recolectado en la X Región¹

Cancer coronatus Molina, 1782. N. v.: **Jaiba reina**; come gente. Distribuída desde Ancón, Perú, al Canal de Picton (Beagle), Chile. Especie muy abundante en la zona mesolitoral. Rango del ancho del caparazón: 20,0-120,0 mm.

Eurypodius latreillei (Guérin, 1828). **Araña de mar**. Distribuída desde Arica al Estrecho de Magallanes. También en Perú e Islas Falkland. Batimetría: 8 a 480 m. Coloración verde oliva; generalmente con gran número de epizoos (algas, briozoos y poríferos) sobre el caparazón y patas.

Patiria obesa. Estrella de mar. Se distribuye desde Concepción hasta el Estrecho de Magallanes. En la zona submareal, alcanza hasta los 8 m de profundidad.

Argobuccinum magellanicus (Roding, 1978). Caracol. (2 ejemplares). Su distribución geográfica en el Pacífico se extiende desde Los Vilos a la región Magallánica y Archipiélago de Juan Fernández. También abarca toda la costa Argentina hasta Uruguay. Vive sobre sustrato rocoso, desde 1 m de profundidad a 580 m. En el Estrecho de Magallanes y alrededores del Canal Beagle se encuentra entre los 50 y 65 m de profundidad. Especie común en Tierra del Fuego, sobre fondos pedregosos del litoral hasta 900 m de profundidad, asociada a los bancos de *Chlamys lischkei*. Frecuente en las trampas de langostas *Jasus frontalis* (H. Milne Edwards) del Archipiélago de Juan Fernández (Osorio 1999).

Nassarius gayi Whelk. Caracoles chicos. Gastrópodos de pequeño tamaño. Se distribuyen desde Perú hasta el Estrecho de Magallanes. Habitan fondos blandos en aguas marinas y estuarinas. En el centro sur de Chile se encuentra en ambientes con sedimento fangoso y con un alto contenido de materia orgánica o en ambientes con sedimento arenoso. Forma parte de la fauna asociada al piure (*Pyura chilensis*). Es una especie carroñera de bivalvos muertos y otros organismos de la macroinfauna.

INFORME FINAL: FIP N° 2004-16 MONITOREO DE LA PESQUERÍA ARTESANAL DE JAIBAS EN LA X y XI REGIONES

¹ Este material fue colectado en la localidad de Curaco de Vélez y desembarcado en Dalcahue.

También consume materia orgánica depositada y desechos de bivalvos. Es depredado por estrellas de mar y peces (la cabrilla *Sebastes capensis*, el pejegallo *Callorhynchus callorhynchus* y la raya *Psammobatis lima*).

Munida gregaria (Fabricius, 1793). Langostino chilote. N. v.: langostino de los canales. Rango de tamaño. L. C.: 27,0 – 38,0 mm. En el Pacífico se encuentra en Nueva Zelanda y en Chile se distribuye desde Calbuco, Provincia de Llanquihue hasta el extremo de América del Sur y continúa por el Atlántico hasta las Islas Falkland. Batimetría: 0 a 60 m. Según Rodríguez y Bahamonde (1986) Munida gregaria junto a M. subrugosa serían la misma especie, con sólo pequeñas diferencias morfológicas entre ellas. Se considera que cada una de ellas correspondería a una fase del ciclo de vida de M. gregaria, representando una etapa pelágica y una demersal. Presenta altas densidades en la zona de los canales, sirviendo de alimento a numerosas especies marinas.

Anthothoe chilensis. Actinia. Se distribuye desde Arica hasta el Archipiélago de Los Chonos y también en Argentina. En las zonas intermareal y submareal, se adhiere a las rocas de orientación perpendiculares a la ola. Generalmente se encuentran en sitios protegidos de la lluvia y no en aquellos expuestos al sol. Ha sido observada a profundidades de hasta 4 a 5 m y en discos adhesivos del chascón (Lessonia nigrescens).

2. Material recolectado en Puerto Chacabuco XI Región².

Taliepus dentatus. Cangrejo. N.v.: Panchote, talicuno, patuda. Se distribuye desde Panamá hasta el Cabo de Hornos. También en Isla San Félix y el Archipiélago de Juan Fernández. Habita costas rocosas de la zona intermareal y submareal, alcanzando 63 m de profundidad, en lugares poblados de algas pardas (*Macrocystis* sp. y *Lessonia* sp.). Forma parte de la fauna asociada al piure (*Piura chilensis*). Consume simultáneamente algas (*Lessonia nigrescens*) y briozoos (*Membranipora isabelleana*). Lo depreda la gaviota *Larus dominicanus*, el róbalo (*Eleginops maclovinus*), el

² Material no recolectado. La clasificación se realizó en base a antecedentes proporcionados en base a entrevista a muestreadores y pescadores.

chungungo (*Lutra felina*), el guarén (*Rattus norwegicus*) y el hombre. Hembras ovígeras durante todo el año (Zagal *et al.*, 2001).

Lithodes santolla (Molina, 1782). N. v.: **Centolla.** Rango de tamaño: 35,7 – 160,0 mm. Se distribuye desde Chiloé hasta el extremo sur de América del Sur. En algunas citas se atribuye a esta espécie un limite norte hasta Talcahuano (Hernández, 1985, en Proceedings of the International King Crab Symposium). También en la costa sud atlántica, desde el Estrecho de Magallanes hasta Uruguay. Su rango batimétrico conocido varía entre 0 y 700 m., aunque se ha señalado que la máxima concentración de esta pesquería se ubica entre 10 y 50 m (Boschi 1984)

Dosidicus gigas (D'Orbigny, 1846). N. v.: **Jibia**, calamar gigante, calamar rojo en Chile. Pota en Perú. De hábitos pelágicos, gran nadador en alta mar. Las concentraciones poblacionales parecen estar relacionadas con zonas de surgencia y las capturas en Chile se extienden entre los 29° y los 34° S, obteniéndose ejemplares cuyas tallas oscilan entre 77 y 103 cm de longitud del manto. Su distribución geográfica se extiende hasta los 55° S, en la costa de Chile. Es abundante de Chiloé al norte. De importancia económica. Se consume en fresco, congelado y conserva, pero la mayor parte se industrializa como harina de jibia, para alimento de animales domésticos, para extraer su tinta y como carnada de pesca. En los últimos 5 años tiene un desembarque promedio de 4,4 t anuales (Osorio, 2002).

Enteroctopus megalocyathus Gould, 1852. N. v.: Pulpo, pulpo de Chiloé o pulpo chilote. Pulpo colorado en Argentina. También denominado como Octopus megalociatus. Tamaño: longitud del manto de entre 8 y 19 cm. Su distribución se extiende desde Concepción al Cabo de Hornos (Chile) y Golfo de San Matías (Argentina). Habita desde la zona intermareal inferior, asociado a fondos rocosos, dentro de cuevas o grietas, o bien en playas submarinas de arcillas tobáceas o rocas de origen volcánico. Batimetría: 15 a 140 m de profundidad. También vive en los grampones de Macrocystis pirifera. Se distribuye en el Sur de Chile (42°S), Estrecho de Magallanes y Canal Beagle hasta el Golfo de San Matías (Argentina), Islas Malvinas y Banco Burdwood. Los juveniles se pueden encontrar en pozas intermareales y cerca de cuelgas de chorito (Mytilus chilensis). Se alimenta de la jaiba remadora (Ovalipes

trimaculatus) y de bivalvos. Lo depreda el salmón de mar (*Pseudopercis semifasciata*), el delfín austral (*Lagenorhynchus australis*), el lobo común (*Otaria flavescens* y el hombre. Depredador oportunista, presenta una amplia variedad de presas, crustáceos (*H. plana*, Cancridae) y peces (Teleostei). Además registra conducta caníbal, basada en el consumo de cápsulas de su misma especie y ejemplares pequeños. Entre sus depredadores se encuentran el delfín austral, el lobo común y el salmón de mar. El macho se diferencia de la hembra por la presencia del tercer brazo derecho hectocotilizado. Al igual que todos los pulpos se presume que la fecundación es interna y colocan puestas de las que emergen las paralarvas . Especie de importancia comercial, como medida de protección se ha establecido un peso mínimo de extracción de un kilo.

Lophogorgia platyclados. **Coral**. Tamaño, alto promedio: 16,5 cm. Habita sustratos rocosos de la zona submareal alcanzando 13 m de profundidad. Es depredado por el nudibranquio tritonia oghneri y extraído artesanalmente por pescadores. De crecimiento lento (Zagal *et al.*, 2001)

Medusas. Clase Scyphozoa, Orden Semaeostomae. *Chrysaora* sp o *Cyanea* sp., no registrada aún para la región.

Elasmobranquios y peces, que aparecen con mayor frecuencia en las trampas, según opinión de los pescadores son:

Mustelus mento Cope, 1877. N. v.: **Tollo**, tollo blanco; tollo fino. Distribuído desde Arica (18°30'S) hasta el Estrecho de Magallanes (52° S) (Ojeda, 1982)

Hippoglossina macrops Steindachner, 1876. **Lenguado**. N. v.: Lenguado de ojos grandes. Su distribución geográfica se extiende desde Arica (18º 30'S) hasta el extremo austral (57º S) (Ojeda, 1982).

Salilota australis (Gunther, 1878). N. v.: **Brótula**; renacuajo de mar. Se distribuye desde Valdivia (39°52'S) hasta el extremo austral (57°S) (Ojeda, 1982).

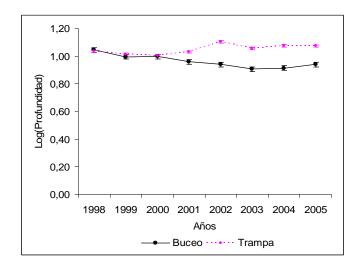
DISTRIBUCIÓN BATIMÉTRICA DE LOS DESEMBARQUES

PROFUNDIDADES DE OPERACIÓN DE LA FLOTA EXTRACTIVA DE JAIBA, X REGIÓN.

A partir de la información recopilada en el periodo 1998-2005, se realizó una exploración de datos, con intención de incorporar en la caracterización de la data histórica, la profundidad de operación de extracción de jaibas mediante trampas y buceo. Cabe señalar que se cuenta con data para la X Región, siendo obtenida para la XI sólo de manera fragmentada y de baja frecuencia, para los últimos años, por lo cual no se consideró en este trabajo.

a) Datos utilizados

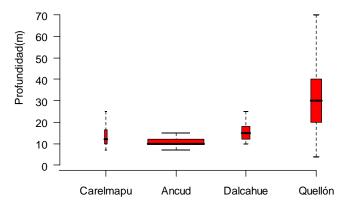
Los datos con que se cuenta, se entregan en la **Tabla 1**. Se han registrado históricamente datos en los puertos de Ancud, Carelmapu, Quellón y Dalcahue. De lo anterior, se entregarán estadísticas de profundidad en buceo, para las localidades de Carelmapu, Ancud y Quellón y para las trampas, en las localidades de Ancud, Dalcahue y Quellón.


Tabla 1. Número de registros de profundidad por forma de pesca de jaiba, desglosados por puerto de desembarque y año.

FORMA DE	AÑO	Puei	TOTAL			
PESCA	ANO	Carelmapu	Ancud	Dalcahue	Quellón	TOTAL
	1998	678	1671	1	6	2.356
	1999	428	1601		1	2.030
	2000	503	1007		1	1.511
BUCEO	2001	409	1384			1.793
BUCEU	2002	177	644		13	834
	2003	32	1046		20	1.098
	2004	99	1548		42	1.689
	2005	4	1030		13	1.047
	1998		1383	15	11	1.409
	1999	6	1415	8	2	1.431
	2000		681		1	682
TRAMPA	2001		601	8		609
IKAWA	2002		1035	7	129	1.171
	2003		1118	18	74	1.210
	2004	4	1191	38	40	1.273
	2005	18	1201	83	10	1.312
Total general		2.358	18.556	178	363	21.455

b) Profundidad de operación por arte de pesca

Al comparar los logaritmos de las profundidades de operación, en un contexto anual, entre los años 1998 y 2000, tanto para trampas como para la extracción de jaibas por buceo tienen los mismos valores, que fueron entre 12 y 10 m (**Figura 1**). Posteriormente, se observó una mayor profundidad de operación con trampas, dado probablemente por limitaciones naturales del buceo, no presentes en las trampas.


Figura 1. Media del logaritmo de la Profundidad de operación para trampas y realizadas a través de buceo para los años 1998-2005

c) Profundidades de operación de las trampas por puerto de Desembarque

Se puede apreciar, que las menores profundidades de operación se vinculan al puerto de Ancud, concentrando el 50% de las observaciones entre los 10 y 12 m de operación; luego le siguen los puertos de Carelmapu y Dalcahue, con medianas de profundidad de 12 m y 15 m, y mayor amplitud de profundidades para el puerto de Carelmapu. Finalmente registró mayores profundidades de operación, el puerto de Quellón, con una mediana de las profundidades de 30 m, concentrando el 50% de las observaciones entre los 20 y 40 m (**Figura 2**)

En cuanto a la tendencia anual, no se observa tendencia en los logaritmos de la profundidades del puerto de Ancud, observándose una tendencia al alza en el puerto de Quellón y una leve tendencia descendente en el puerto de Dalcahue (**Figura 3**).

Figura 2. Profundidades de operación de las trampas, para los años 1998-2005, por puerto de desembarque. El ancho de las barras es proporcional al número de datos considerados

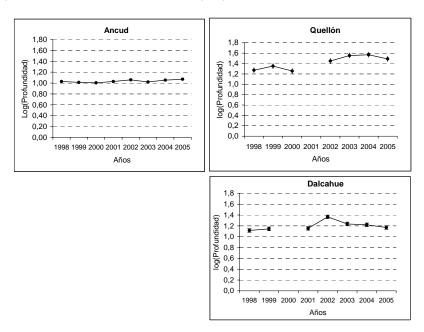
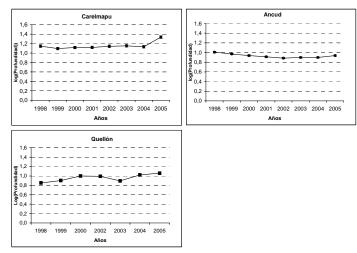


Figura 3. Media del logaritmo de la Profundidad de operación para trampas para los años

1998-2005, por puerto de desembarque.

Profundidades de operación del buceo por puerto de Desembarque


El puerto que registró mayores profundidades de operación fue el de Carelmapu, con una mediana de 15 m y el 50% de los de operación entre los 12 m y 16 m. Por su parte, Ancud registró los menores valores, con una mediana de 8 m y el 50% de los registros concentrados entre 7 m y 10 m. El puerto de Quellón registró una mediana de 10 m, con el 50% de los registros entre los 7m y 13 m (**Figura 4**).

Al igual que lo registrado en el buceo, a escala logarítmica se aprecia una tendencia ascendente sólo en las profundidades de operación de los buzos que desembarcan en el puerto de Quellón.

Figura 4. Profundidades de operación de las trampas, para los años 1998-2005, por puerto de desembarque. El ancho de las barras es proporcional al número de datos considerados

Figura 5. Media del logaritmo de la Profundidad de operación para la operación con buceo, años 1998-2005, por puerto de desembarque.

ANEAU	A	N	EXO	9
-------	---	---	-----	---

PERSONAL PARTICIPANTE POR OBJETIVO ESPECÍFICO

PLAN DETALLADO DE ASIGNACIÓN DE PERSONAL PROFESIONAL Y TÉCNICO (HH)

A) OBJETIVO GENERAL

Personal	Puesta en marcha	Recopilación datos	Análisis datos	Elaboración informes	Total
Roberto Bahamonde	81	30	140	156	407
Nancy Barahona			47	47	94
Juan Quiroz			97	44	141
Claudio Bernal			47	40	87
Andrés Olguín	46		155	97	298
Carlos Montenegro	23	30	205	167	425
Zaida Young	15		70	29	114
Cristian Toledo	47	91	75	65	278
Esteban Molina			344	196	540
Pedro Báez			40	40	80
Vivian Pezo	43	160	80	46	329
Raúl Riquelme	69	246	194		509
Patricio Gálvez			54	53	107
Mauricio Sáez		1.103			1.103
Claudio Díaz		1.103			1.103
Georgius Kalergis		1.103			1.103
Elvia Mancilla		1.103			1.103
Edita Ortiz		1.103			1.103
Total	324	6.072	1.548	980	8.924

B) OBJETIVO ESPECÍFÍCO 2.2.1

Personal	Puesta en marcha	Recopilación datos	Análisis datos	Elaboración informes	Total
Roberto Bahamonde	23	30	45	45	143
Nancy Barahona					
Juan Quiroz					
Claudio Bernal					
Andrés Olguín	23		42	47	112
Carlos Montenegro	23		40	47	110
Zaida Young					
Cristian Toledo					
Esteban Molina					
Pedro Báez					
Vivian Pezo	23	40			63
Raúl Riquelme	23	50	40		113
Patricio Gálvez			24	24	48
Mauricio Sáez		130			130
Claudio Díaz		130			130
Georgius Kalergis		130			130
Elvia Mancilla		130			130
Edita Ortiz		130			130
Total	115	770	191	163	1.239

C) OBJETIVO ESPECÍFÍCO 2.2.2

Personal	Puesta en marcha	Recopilación datos	Análisis datos	Elaboración informes	Total
Roberto Bahamonde	23		40	45	108
Nancy Barahona			47	47	94
Juan Quiroz			27		27
Claudio Bernal					
Andrés Olguín			47		47
Carlos Montenegro		30	80	60	170
Zaida Young	15		40	29	84
Cristian Toledo					
Esteban Molina			84	40	124
Pedro Báez					
Vivian Pezo	20	30	30	46	126
Raúl Riquelme	23	50	49		122
Patricio Gálvez			30	29	59
Mauricio Sáez		330			330
Claudio Díaz		330			330
Georgius Kalergis		330			330
Elvia Mancilla		330			330
Edita Ortiz		330			330
Total	81	1.760	474	296	2.611

D) OBJETIVO ESPECÍFÍCO 2.2.3

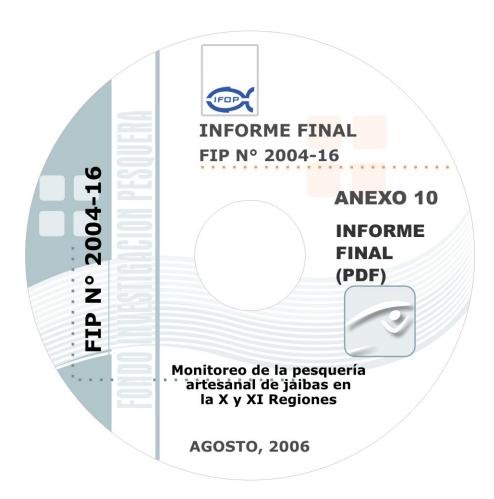
Personal	Puesta en marcha	Recopilación datos	Análisis datos	Elaboración informes	Total
Roberto Bahamonde			30	23	53
Nancy Barahona					
Juan Quiroz					
Claudio Bernal					
Andrés Olguín	23		66	50	139
Carlos Montenegro			85	60	145
Zaida Young			30		30
Cristian Toledo					
Esteban Molina			140	56	196
Pedro Báez					
Vivian Pezo		30	20		50
Raúl Riquelme	23	40	60		123
Patricio Gálvez					
Mauricio Sáez		353			353
Claudio Díaz		353			353
Georgius Kalergis		353			353
Elvia Mancilla		353			353
Edita Ortiz		353			353
Total	46	1.835	431	189	2.501

E. OBJETIVO ESPECÍFÍCO 2.2.4

Personal	Puesta en marcha	Recopilació n datos	Análisis datos	Elaboración informes	Total
Roberto Bahamonde				23	23
Nancy Barahona					
Juan Quiroz					
Claudio Bernal					
Andrés Olguín					
Carlos Montenegro					
Zaida Young					
Cristian Toledo					
Esteban Molina			120	100	220
Pedro Báez			40	40	80
Vivian Pezo	10	20	20		50
Raúl Riquelme	10	20	20		50
Patricio Gálvez					
Mauricio Sáez		190			190
Claudio Díaz		190			190
Georgius Kalergis		190			190
Elvia Mancilla		190			190
Edita Ortiz		190			190
Total	20	990	200	163	1.373

F) OBJETIVO ESPECÍFÍCO 2.2.5

Personal	Puesta en marcha	Recopilación datos	Análisis datos	Elaboración informes	Total
Roberto Bahamonde	15		25	20	60
Nancy Barahona					
Juan Quiroz					
Claudio Bernal					
Andrés Olguín					
Carlos Montenegro					
Zaida Young					
Cristian Toledo	47	91	75	65	278
Esteban Molina					
Pedro Báez					
Vivian Pezo					
Raúl Riquelme		47	15		62
Patricio Gálvez					
Mauricio Sáez		60			60
Claudio Díaz		60			60
Georgius Kalergis		60			60
Elvia Mancilla		60			60
Edita Ortiz		60			60
Total	62	438	115	85	700


G) OBJETIVO ESPECÍFÍCO 2.2.6

Personal	Puesta en marcha	Recopilación datos	Análisis datos	Elaboración informes	Total
Roberto Bahamonde			20		20
Nancy Barahona					
Juan Quiroz			70	44	114
Claudio Bernal			47	40	87
Andrés Olguín					
Carlos Montenegro					
Zaida Young					
Cristian Toledo					
Esteban Molina					
Pedro Báez					
Vivian Pezo		40			40
Raúl Riquelme		39			39
Patricio Gálvez					
Mauricio Sáez		40			40
Claudio Díaz		40			40
Georgius Kalergis		40			40
Elvia Mancilla		40			40
Edita Ortiz		40			40
Total		279	137	84	500

ANE	XO	1	O
-----	----	---	---

CD CON INFORME FINAL FIP N° 2004-16 en PDF

INSTITUTO DE FOMENTO PESQUERO Blanco 839, Fono 56-32-322000 Valparaíso, Chile www.ifop.cl