INFORME FINAL

FIP Nº 2008-17

EVALUACION DIRECTA DE CAMARON NAILON ENTRE LA II Y VIII REGIONES, AÑO 2008

UNIDADES EJECUTORAS:

AREA DE PESQUERIAS DEPTO. BIOLOGIA MARINA UNIVERSIDAD CATOLICA DEL NORTE - SEDE COQUIMBO

DEPARTAMENTO DE OCEANOGRAFIA UNIVERSIDAD DE CONCEPCION

COMPOSICIÓN Y ORGANIZACIÓN DEL EQUIPO PROFESIONAL Y TÉCNICO

ID	NOMBRE	TÍTULO/GRADO	FUNCIÓN EN EL PROYECTO
UNIV	ERSIDAD CATÓLICA I	DEL NORTE	
1	Enzo Acuña	M.Sc. Oceanógrafo	Coordinación. Jefe de Proyecto. Análisis y elaboración de informes.
2	Alex Cortés	Biólogo Marino	Análisis y cartografía SIG, Modelación espacial APA, Plano de redes, Estructura de tallas.
3	Manuel Andrade	Biólogo Marino	Análisis información Netmind.
4	Juan Carlos Villarroel	Biólogo Marino	Potencial reproductivo.
5	Viviana López	Biólogo Marino	Proporción y madurez sexual. Digitación datos.
6	Ana Olivares	Biólogo Marino	Coordinadora muestreos laboratorio, planificación y digitación de datos. II-III Región.
7	Ximena Bennett	Biólogo	Coordinadora muestreos laboratorio, planificación y digitación de datos. IV-VIII Región.
8	Julio Moraga	M.Sc. Oceanógrafo	Caracterización hidrográficas del agua, oceanografía.
9	Manuel Berrios	Ing. (E) Geomensura	Análisis de sustrato, granulumétrico y sedimentológico.
10	Claudia Valenzuela	Téc. Pesquero	Muestreo frecuencia y biológico-específico en laboratorio.
11	Sergio Fuentes	Técnico	Muestreo oceanográfico y sedimentológico.
12	N.N. 1	Téc. Pesquero	Muestreo frecuencia y biológico-específico en laboratorio.
UNIV	ERSIDAD DE CONCEP	CIÓN	
13	Hugo Arancibia	Dr.Sc. Naturales	Coordinación muestreos zona Sur. Fauna acumpañante.
14	Luis Cubillos	Biólogo Pesquero	Distribución CPUE, cálculo de abundancia y biomasa.
15	Rafael León	Biólogo Marino, M.Sc. Estadística	Fauna acompañante.
16	Milton Pedraza	Biólogo Marino	Estado situación recursos.
17	N.N. 1	Téc. Pesquero	Muestreo frecuencia y biológico-específico en laboratorio.
18	N.N. 2	Téc. Pesquero	Muestreo frecuencia y biológico-específico en laboratorio.
CONS	SULTORA CIMAR		
19	Rodrigo Grau	Biólogo Marino	Coordinación y planificación de muestreos a bordo II-VIII Regiones.
20	Danny Rivera	Téc. Acuacultura	Muestreo a bordo II-IV Regiones. Muestreo frecuencia y biológico-específico en laboratorio.
21	José Zepeda	Téc. Pesquero	Muestreo a bordo V-VIII Regiones. Muestreo frecuencia y biológico-específico en laboratorio.
CONS	SULTORES INDEPENDI	ENTES	
22	Luis Cid	Ph.D. Estadística	Análisis estadísticos, diseño de muestreo. Biomasa método Thompson (1992).
23	Rubén Alarcón	M.Sc. Pesquerías	Biomasa, distribución, composición e importancia relativa. Potencial Reproductivo.

Este documento debe citarse:

Acuña, E., R. Alarcón, H. Arancibia, M. Barros, L. Cid, A. Cortés, l. Cubillos y J. Pineda. 2009. Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2008. Informe Final, FIP I/T N° 2008-17, 274 pp.

RESUMEN EJECUTIVO

Se informa sobre las actividades realizadas durante la ejecución de los cruceros de evaluación directa de la especie camarón nailon en el litoral entre la II y VIII Regiones, año 2008.

En el área de estudio, el muestreo estuvo dirigido tanto a los caladeros como a las zonas intercaladeros conocidos de la especie. Al interior de cada caladero, en la plataforma continental y talud de las siete Regiones, se utilizó un muestreo probabilístico (estocástico) que corresponde a un muestreo estratificado por celdas. Para definir los estratos, se consideró la posición conocida de los caladeros de la especie, obtenida en estudios anteriores realizados por la Universidad Católica del Norte, así como por otras instituciones nacionales.

Se llevó a cabo el 95% de los lances propuestos, siendo más exitosos aquellos efectuados dentro de los caladeros que los de las zonas intercaladeros. En la II Región, se obtuvo una proporción de lances positivos para la especie de un 32,14%, con una captura equivalente al 1,63% del total obtenido en toda el área de estudio, mientras que en la III Región se registró un 65,66% de lances positivos para la especie objetivo lo que representa un 10,16% de toda la captura. En la IV Región se registró un 73,42% de los lances positivos para camarón nailon, con una captura equivalente al 49,71% del total obtenido en el área de estudio. En la V Región, se obtuvo una proporción de lances positivos para la especie de un 80,6%, con una captura equivalente al 17,71% del total obtenido en toda el área de estudio, mientras que en la VI Región se registró un 92,31% de lances positivos para la especie objetivo lo que representa un 5,33% de toda la captura. Finalmente, en la VII y VIII Región se registró un 80,0 y 55,0% de los lances positivos para camarón nailon, respectivamente, con capturas equivalentes al 11,45% y al 4,01% del total obtenido en el área de estudio.

El muestreo biológico del estudio consideró la medición (LC, mm) de un total de 54.991 ejemplares de camarón nailon para construir las distribuciones de frecuencia de tallas por sexo, mientras que para estimar los parámetros de la relación talla-peso especie específica, se pesó 20.591 ejemplares (37,44%).

El rango de tallas global de camarón nailon (sexos combinados) en toda el área de estudio correspondió a 10,1 - 39,8 mm LC, mientras los rangos observados en las distintas regiones corresponden a 12,7 - 36,9 mm LC en la II Región; 11,4 - 37,8 mm LC en la III Región; 10,1 - 38,7 en la IV Región; 13,9 - 38,8 mm LC en la V Región; 14,5 - 39,4 mm LC en la VI Región, 14,5 - 39,8 en la VII Región; y 13,1 - 37,1 mm LC en la VIII Región. En términos globales, se observa una tendencia a encontrar una fracción mayor de tallas más grandes de norte a sur.

Con respecto a la proporción sexual, se observa que en la zona norte, predominan las hembras de camarón nailon entre la II y V Regiones, para luego predominar los machos entre la VI y VIII Regiones. El mayor porcentaje de machos se encuentra en la VIII Región con un 61,62%.

Durante el período de estudio, entre la II y VIII regiones, se analizaron 7.842 hembras ovíferas de camarón nailon con huevos en distintos estados de desarrollo embrionario, sin embargo, el 64,05% de las hembras portadoras se encontraba en el estado 4, con un escaso número de estados tempranos (1) e intermedio (2 - 3), lo que es consistente con la época en que se llevaron a cabo los muestreos, cuando el proceso reproductivo está muy avanzado.

El análisis de la distribución espacial de los lances de pesca (tanto negativos como positivos), y el valor de la captura por unidad de área barrida (cpua, ton/km²) por latitud, revelaron la presencia de 26 focos de abundancia de camarón nailon, cuyos límites fueron determinados aplicando el "Enfoque Geoestadístico Transitivo", ocupando un área equivalente a 3.128 km². En el análisis geoestadístico se incluyó el 100% de los lances de pesca efectivamente realizados entre la II y VIII Regiones (n = 565).

El análisis de variogramas direccionales reveló la presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional de camarón nailon en la macrozona norte en dirección N-S, esto es, anisotropia geométrica asociada a la orientación de la costa. Mientras, en la macrozona sur, la distribución espacial de la densidad fue isotrópica. El modelo de variograma teórico que mostró el mejor ajuste en ambas macrozonas, fue el modelo esférico.

El centro de gravedad de la densidad poblacional de camarón nailon (ton/Km^2) en el año 2008, se encontró en los 32°01'27"S (inercia: I = 7,314°S) y 71°55'38"W (I = 0,416°W),

aproximadamente en la misma posición respecto del centro de gravedad observado en el año 2006, último año con dato de referencia, pero desplazado hacia el sur respecto de lo observado entre los años 1999 y 2004, donde el centro de gravedad promedio se encontró más al norte en 30°41'S.

El análisis de la evolución temporal del índice de Gini respecto de la biomasa entre el año 2000 y 2008, exceptuando el año 2007 cuando no se realizó crucero de evaluación directa, mostró una tendencia decreciente, contraria a la tendencia de las biomasas. El índice de Gini para toda el área de estudio en el año 2008 alcanzó a 0,210 revelando un alto grado de concentración de la densidad poblacional de camarón nailon en el área de estudio.

La estimación de biomasa total del stock de camarón nailon (*H. reedi*) en la plataforma y talud continental de las Regiones II a VIII, estimada mediante el enfoque geoestadístico, alcanzó a 28.772,2 toneladas (D.E. = 11.413,8 tons). El intervalo de confianza de la biomasa es entre 28.388,1 tons (límite inferior) y 29.156,3 tons (límite superior). La biomasa total del stock de camarón nailon estimada mediante el estimador de la Distribución Delta lognormal alcanzó 29.608,3 tons (intervalo de confianza, IC: 21.618,0 - 39.786,1 tons). Mediante el método de las microceldas de estimación geoestadística se estimó una biomasa de 28.321,8 ton (IC: 27.529,5 - 29.114,1) y por el método del estimador de razón, la biomasa de camarón nailon fue calculada en 25.014,3 tons. Finalmente, el método de estimación del muestreo estratificado entregó una biomasa de 46.407,9 tons con un IC entre 45.383,7 y 47.432,1 tons.

El método de los vecinos naturales, utilizado experimentalmente como alternativa al enfoque geoestadístico transitivo para la estimación del área de los focos de abundancia de camarón nailon, produjo una subestimación del área ocupada por el stock de 32,8%, lo que se tradujo en la subestimación de la biomasa en 34,9%. En consecuencia, se destaca que este método produce subestimaciones significativas del área de los focos de abundancia en el caso del camarón nailon. Más aún, el método de vecinos naturales no resuelve la estimación del área de focos pequeños, conformados por uno o dos lances o en los casos en que éstos se encuentran alineados latitudinal o longitudinalmente.

Se realiza un análisis de las especies disponibles al arte de pesca de arrastre camaronero con el propósito de identificar la composición específica e importancia relativa de las especies, así como identificar asociaciones faunísticas mediante análisis multivariados.

El área de estudio comprendió de la II a la VIII Regiones. Se utilizó la CPUE (ton/km²) estandarizada a unidad básica de muestreo (1 mn x 1 mn) para los análisis correspondientes. Para las principales especies de la fauna acompañante se estimó la frecuencia de ocurrencia (en porcentaje), captura (ton) e importancia relativa (porcentaje en peso), tanto respecto de la captura total como de la captura del recurso objetivo camarón nailon, por Región y por estratos de 100 m de profundidad. Las técnicas multivariadas consistieron en Análisis de Dendrograma (Cluster Analysis) y Escalamiento Multidimendional (MDS, Multi-Dimensional Scaling) para la identificación y caracterización de asociaciones faunísticas en este estudio.

La fauna acompañante estuvo compuesta por 37 taxa, aunque el 98% de la CPUE total de la fauna acompañante de camarón nailon (*Heterocarpus reedi*) estuvo compuesta sólo por 9 especies, destacando el lenguado de ojos grandes (*Hippoglossina macrops*), la merluza común (*Merluccius gayi*), el langostino colorado (*Pleuroncodes monodon*), el langostino amarillo (*Cervimunida johni*), el besugo (*Epigonus crassicaudus*) y el pejerrata (*Nezumia pulchella*), tanto latitudinalmente como batimétricamente.

Con la aplicación de los análisis multivariados se identificó cinco asociaciones faunísticas, siendo el gradiente batimétrico entre 200 y 300 m de profundidad el principal límite distribucional; la latitud fue un elemento secundario en la identificación de dichas asociaciones. En otras palabras, la fauna acompañante en las capturas del recurso camarón nailon se segrega primero batimétricamente (en profundidad) y luego latitudinalmente (en el sentido norte-sur).

Las especies de mayor importancia relativa como fauna acompañante en las capturas de camarón nailon son langostino colorado, langostino amarillo, lenguado de ojos grandes y merluza común, tanto respecto a la captura total, incluyendo a la especie objetivo, como respecto de la captura total de la fauna acompañante (sin considerar a camarón nailon, que es la especie objetivo). Estas mismas especies son las más relevantes en los gradientes batimétrico y latitudinal.

Hasta esta instancia, los análisis de la relación entre la densidad de camarón nailon y las condiciones oceanográficas estuvieron centrado en características propias de la columna de agua, sin considerar el registro de antecedentes relacionados con los sustratos presentes en el área donde se encontraba el camarón nailon. En este estudio, se analizó la relación entre las CPUE y las características de los sedimentos.

Con los datos de las características de los sedimentos y mediante el SIG se generaron coberturas o mapas de distribución de las mismas, las que sirvieron como base para el despliegue de las CPUE de la especie, las que fueron subdivididas en categorías. Con esta información georreferenciada se generaron distribuciones de frecuencia de las distintas categorías de CPUE detectadas en cada uno de los distintos tipos de sedimentos, estableciéndose de esta manera las potenciales relaciones entre cada sedimento con las CPUE observadas de camarón nailon,

Aunque no se oberva una relación clara entre los niveles de CPUE con algunos de los tipos de sedimentos, sobre el 70% de las observaciones positivas se encontraron sobre arena fina y un 25,7% sobre arena mediana, los dos tipos de sedimentos que concentran la mayoría de estos lances.

Se evalúa la situación del camarón nailon en la unidad de pesquería II-VIII Región, sobre la base de un Modelo de dinámica estructurado en tallas. El modelo explica bien los datos observados, particularmente aquellos de la estructura de tallas en los cruceros de evaluación y la biomasa evaluada mediante el método de área barrida. Se observa una recuperación de la biomasa total y explotable del camarón nailon desde el 2001 al 2008, debido al ingreso de un reclutamiento abundante el 2003 y una tendencia decreciente de la tasa de explotación (15% en el 2008) y que está asociado con el establecimiento de cuotas anuales de captura del orden de 4 – 5 mil toneladas. Si bien ha existido una recuperación de la biomasa explotable, se considera que los niveles de biomasa actuales aún no se consolidan para sustentar capturas por sobre 5000 toneladas. Si el objetivo de manejo fuera el permitir incrementar los niveles de biomasa actuales y generar tasas de explotación del orden del 10% en el mediano plazo, se recomendarían capturas inferiores a las cuotas actuales.

INDICE GENERAL

RE	SUMEN EJECUTIVO		iii
IN	DICE GENERAL		vii
IN	DICE DE FIGURAS		xvi
IN	DICE DE ANEXOS		xix
1.	Objetivos		1
	1.1. Objetivo General		1
	1.2. Objetivo Específ	icos	1
2.	Antecedentes		2
	2.1. Generalidades		2
	2.2. Administración d	e la pesquería de camarón nailon	4
3.	Propuesta Metodológica	1	8
	3.1. Generalidades		8
	3.2. Estandarización o	le las naves	8
	3.3. Análisis de las re	des de arrastre y levantamiento de planos	9
	3.4. Medición directa	de la abertura de punta de alas (APA).	9
	3.5. Registros de info	rmación (datos) del lance y capturas	10
	3.5.1. Datos de	l lance	10
	3.5.2. Datos de	capturas	11
	3.5.2.1.	Captura por lance	11
	3.5.2.2.	Captura estandarizada por lance	11
	3.5.3. Muestree	os de longitud cefalotorácica y biológico-específicos	11
	3.6. Diseño de muestr	eo	12
	3.6.1. Método	de muestreo	12
	3.6.2. Estrategi	as muestrales	13
	3.6.2.1.	Muestreo completamente aleatorio	14
	3.6.2.2.	Muestreo estratificado	14
	3.6.2.3.	El muestreo sistemático.	15
	3.6.2.4.	Muestreo sistemático estratificado	15
	3.6.3. Diseño n	nuestral propuesto	16
	3.6.3.1.	Unidad muestral	16

	3	3.6.3.2.	Estrategia de muestreo (Proceso de Aleatorización)	17
	3	3.6.3.3.	Tamaño de la muestra	18
	3	3.6.3.4.	Definición de estratos, número de transectas y número de	
	1	ances	19	
	3.6.4.	Aplicacio	ones SIG para el manejo y tratamiento de la información	23
	3	3.6.4.1.	Presentación	23
	3	3.6.4.2.	Georreferenciación de los lances de pesca	25
	3	3.6.4.3.	Metodología de implementación de bases de datos	25
	3	3.6.4.4.	Procesamiento y tratamiento de la información	26
3.7.	Objetiv	o Específi	co 1	26
	3.7.1.	Distribuc	ión espacial de la densidad de camarón nailon	26
	3.7.2.	Análisis	espacio-temporal de la distribución espacial de camarón nailon	32
3.8.	Objetiv	o Específi	co 2	33
	3.8.1.	Estimaci	ión de biomasa	34
	3	3.8.1.1.	Método geoestadístico intrínseco	34
	3	3.8.1.2.	Método de la Distribución Delta-lognormal	36
	3	3.8.1.3.	Estimador de razón	38
	3	3.8.1.4.	Microceldas de estimación geoestadística	39
	3	3.8.1.5.	Estimación de la Biomasa mediante Muestreo Estratificado	40
	3.8.2.	Estimacio	ón del área de los focos de abundancia	43
	3	3.8.2.1.	Geoestadística transitiva	43
	3	3.8.2.2.	Método alternativo de estimación del área de los focos de	
	8	abundancia	n 45	
	3.8.3.	Relación	longitud-peso	52
	3.8.4.	Pesos me	edios por intervalo de talla	54
	3.8.5.	Distribuc	ión espacial y batimétrica de la longitud media	55
3.9.	Objetiv	o Específi	co 3	56
	3.9.1.	Muestreo	biológico a bordo de la nave	56
	3.9.2.	Tamaño	de muestra	56
	3.9.3.	Determin	nación del estado de desarrollo embrionario de huevos	57
	3.9.4.	Proporcio	ón sexual	58
	395	Talla pro	medio de madurez sexual	59

	3.10. Objetivo específi	ico 4	60
	3.10.1. Introduc	ción	60
	3.10.2. Metodol	ogía	62
	3.10.2.1.	Descripción de la abundancia de la fauna acompañante	62
	3.10.2.2.	Identificación de asociaciones	63
	3.10.2.3.	Determinación de diferencias entre asociaciones	64
	3.10.2.4.	Contribución de cada especie en la (di)similitud	65
	3.10.2.5.	Distribución de camarón nailon y su superposición espacial	
	con langos	stinos	66
	3.11. Objetivo Específ	ĭco 5	70
	3.11.1. Anteced	entes	70
	3.11.2. Propuest	a Metodológica:	71
	3.11.2.1.	Análisis de antecedentes	71
	3.11.2.2.	Relación de características del sustrato y CPUA	71
	3.12. Objetivo Específ	ĭco 6	75
	3.12.1. Dinámic	a básica	78
	3.12.1.1.	Reclutamiento	78
	3.12.1.2.	Capturas	79
	3.12.1.3.	Selectividad	79
	3.12.1.4.	Matriz de transición del crecimiento	80
	3.12.1.5.	Condiciones iniciales	81
	3.12.1.6.	Datos disponibles	82
	3.12.1.7.	Funciones de verosimilitud	83
	3.12.1.8.	Penalizaciones e información a priori	86
	3.12.1.9.	Análisis de riesgo	87
	3.12.1.10.	Implementación y proceso de estimación	87
4.	RESULTADOS		89
	4.1. Aspectos operac	ionales de los cruceros	89
	4.2. Estandarización	de las naves y estimación directa de la APA	91
	4.2.1. Estandar	rización de las naves	91
	4.2.2. Estimaci	ón directa de la APA	91
	4.1. Capturas y densi	dad local (CPUA) por lance de pesca.	92

4.2.	Aspect	os biológic	cos.	93
	4.2.1.	Capturas	y muestreo biológico.	93
	4.2.2.	Composi	ción de tamaños	94
	4	4.2.2.1.	Machos por foco.	94
	4	4.2.2.2.	Hembras por foco	98
	4	4.2.2.3.	Sexos combinados por Región.	102
	4	4.2.2.4.	Machos por Región	103
	4	4.2.2.5.	Hembras por Región	103
	4.4.3.	Relación	longitud-peso	106
4.5.	Objeti	vo Específ	ico 1	107
	4.5.1.	Identific	ación de focos de abundancia	107
	4.5.2.	Análisis	estructural	112
	4.5.3.	Análisis	espacio-temporal de la distribución espacial de camarón nailon	113
	4	4.5.3.1.	Centro de gravedad e inercia	113
4.6.	Objetiv	vo Específi	co 2	117
	4.6.1.	Enfoque	geoestadístico	117
	4.6.2.	Método d	le la Distribución Delta-lognormal	121
	4.6.3.	Estimado	or de razón	123
	4.6.4.	Microcel	das de estimación geoestadística	124
	4.6.5.	Muestreo	Estratificado	125
	4.6.6.	Método a	lternativo de estimación del área de los focos de abundancia	127
4.7.	Objetiv	vo Específi	co N° 3.	130
	4.7.1.	Condició	n reproductiva del camarón nailon	130
	4	4.7.1.1.	Estados de madurez embrionaria de las hembras ovíferas	130
	4	4.7.1.2.	Distribución de hembras ovíferas por Región.	130
	4	4.7.1.3.	Distribución de la talla corporal de hembras ovíferas por	
	(estado de n	nadurez embrionaria	131
	4	4.7.1.4.	Distribución geográfica global de las hembras ovíferas por	
	(estado de n	nadurez embrionaria.	133
	2	4.7.1.5.	Distribución batimétrica de las hembras ovíferas según su	
	(estado de n	nadurez embrionaria	135
	472	Proporció	ón sexual	136

	4.7.2.1.	Proporcion sexual por Region.	136
	4.7.2.2.	Proporción sexual a la talla por Región	137
	4.7.2.3.	Proporción sexual por foco de abundancia.	140
	4.8. Objetivo Especís	ñco Nº 4	141
	4.8.1. Descripe	ción de la abundancia de la fauna acompañante	141
	4.8.1.1.	Composición específica general de la fauna acompañante	141
	4.8.1.2.	Distribución de la fauna acompañante en sentido latitudinal	141
	4.8.1.3.	Distribución de la fauna acompañante en sentido batimétrico.	146
	4.8.1.4.	Identificación y caracterización espacial de las asociacione	S
	específica	s 148	
	4.8.2. Identific	ación de asociaciones específicas.	150
	4.8.3. Detecció	on de diferencias entre asociaciones	154
	4.8.3.1.	Análisis de Similitud (ANOSIM)	154
	4.8.3.2.	Contribución de cada especie en la similitud en los ensamble	S
	identificac	dos mediante análisis de clasificación por medio de análisis d	e
	Porcentaje	e de Similitud (SIMPER)	155
	4.9. Objetivo Especí	ñco Nº 5.	157
	4.9.1. Anteced	lentes.	157
	4.9.1. Relación	n espacial entre cpua y los tipos de sedimentos	159
	4.10. Objetivo Especí	ico Nº 6	164
	4.10.1. Situació	n actual del recurso en la zona de estudio.	164
	4.10.1.1.	Crecimiento y matriz de transición.	164
	4.10.1.2.	Consideraciones sobre de la evaluación indirecta	165
	4.10.1.3.	Evaluación de stock	166
	4.10.1.4.	Situación actual y lineamientos de manejo	170
	4.10.1.5.	Análisis de riesgo	172
5.	Discusión		174
6.	Conclusiones		180
7.	Taller de difusión		183
8.	Referencias Bibliográf	icas.	188
9.	Anexos		197

IO. PLAN	N DETALLADO DE ASIGNACION DEL PERSONAL PROFESIONAL	_ Y
TÉCNICO)	. 250
10.1	Total de Horas asignadas	. 250
	10.1.1. Objetivo específico 1	250
	10.1.2. Objetivo específico 2.	. 251
	10.1.3. Objetivo específico 3.	. 252
	10.1.4. Objetivo específico 4.	. 253
	10.1.5. Objetivo específico 5.	. 254
	10.1.6. Objetivo específico 6.	. 255
	INDICE DE TABLAS	
Tabla 1.	Proyectos de evaluación directa e indirecta de camarón nailon licitados por el FIP y financiados por empresas pesqueras, instituciones ejecutoras y autor(es). El año 2007 no se realizó el estudio correspondiente.	4
Tabla 2.	Cuotas globales anuales de captura (ton) de camarón nailon asignadas en el período 2000-2008, fracciones intra-anuales y Decretos correspondientes en la unidad de pesquería II-VIII Regiones.	7
Tabla 3.	Definición de estratos y sus correspondientes tamaños muestrales indicados como número de transectas. La tercera columna corresponde a la distancia entre el límite norte y el límite sur del estrato, medido en minutos. La tercera columna corresponde a la longitud del estrato, y la Columna 4 corresponde las densidades medias obtenidas del proyecto FIP Nº 2004-10, utilizadas en el presente proyecto para los coeficientes de proporcionalidad con aquella densidad	21
Tabla 4.	Parámetros de crecimiento en longitud de camarón nailon.	
Tabla 5.	Variables operativas del estudio de evaluación directa de camarón nailon entre la II y VIII Regiones.	89
Tabla 6.	Número de lances propuestos y efectuados totales en los caladeros históricos de camarón nailon, por Región	90
Tabla 7.	Lances con captura de camarón nailon por Región y porcentaje con respecto a los lances efectuados en cada caso.	90
Tabla 8.	Resultados de la prueba estadistica t-Student de comparación de medias con varianzas desiguales (Sokal & Rohlf, 1979) entre la densidad poblacional promedio (ton/km2) entre las embarcaciones PAM "FOCHE" y L/M "ISABEL-S"	91
Tabla 9.	Parámetros de la relación funcional entre la APA (variable dependiente) y las variables independientes <i>LCC</i> , <i>Prof</i> y <i>Vel</i> en el PAM "FOCHE" y L/M ISABEL-S. <i>pdg</i> = parámetro de dispersión de la familia gaussiana.	92
Tabla 10.	Esfuerzo total de muestreo de frecuencia (medidos) y biológico específicos (pesados) de la captura de camarón nailon entre la II y VIII Regiones.	93
Tabla 11.	Parámetros de la relación talla-peso de camarón nailon (<i>H. reedi</i> , ambos sexos) por foco y total. SCR = suma de cuadrados residuales.	106

Tabla 12.	Límites latitudinales de los focos de abundancia de camarón nailon (<i>H. reedi</i>) y área (km²) correspondiente entre la V y VIII Regiones.	108
Tabla 13.	Fracción de área (km²) de los caladeros de camarón nailon (<i>H. reedi</i>) dentro y fuera de las 5 mn de exclusión artesanal.	111
Tabla 14.	Parámetros del variograma teórico según el modelo esférico para la macrozona norte y sur de camarón nailon (<i>H. reedi</i>). SCR: suma de cuadrados de los residuos, VNE: Varianza no explicada	112
Tabla 15.	Densidad poblacional (cpua, ton/km²) promedio, desviación estándar, tamaño de muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de camarón nailon (<i>H. reedi</i>) por fracción de área de los focos de abundancia entre la V y VIII Región.ARPA: 1 = DENTRO, 2 = FUERA.	118
Tabla 16.	Densidad poblacional (cpua, ton/km²) promedio, desviación estándar, tamaño de muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de camarón nailon (<i>H. reedi</i>) por Región	119
Tabla 17.	Biomasa estimada (toneladas) de camarón nailon (<i>H. reedi</i>), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región	120
Tabla 18.	Biomasa estimada (toneladas) de camarón nailon (<i>H. reedi</i>) e intervalos de confianza (LI = límite inferior; LS = límite superior) por Región, fuera y dentro de la ARPA. ARPA: 1 = DENTRO, 2 = FUERA	121
Tabla 19.	Biomasa estimada (toneladas) de camarón nailon (<i>H. reedi</i>), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región. Distribución Delta	123
Tabla 20.	Biomasa (tons) e intervalos de confianza inferior (LI, tons) y superior (LS, tons) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Región, por foco	124
Tabla 21.	Biomasa estimada (toneladas) de camarón nailon (<i>H. reedi</i>) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la V y VIII Región. Microceldas de estimación geoestadística	125
Tabla 22.	Biomasa de camarón por estrato y total (tons), área de los estratos (km²), cpua (tons/km²) e intervalos de confianza del 95% para el estimador de biomasa total	126
Tabla 23.	Biomasa de camarón nailon por región y total (tons), área de las regiones (km²), cpua (tons/km²) e intervalos de confianza del 95% por región y para el estimador de biomasa total.	126
Tabla 24.	Estimación del área de los focos de abundancia de camarón nailon (<i>H. reedi</i>) por el enfoque geostadistico transitivo (G.T.) y el método de vecinos naturales (V.N.), diferencia (Dif., %) entre ambos estimadores, densidad poblacional promedio (cpua, ton/km²) por foco y estimaciones de biomasa (tons) para cada método de estimación de área	128
Tabla 25.	Distribución por región de las hembras ovíferas de camarón nailon, según estado de desarrollo.	
Tabla 26.	Características morfométricas de las hembras de camarón nailon, por estado de desarrollo de los huevos	131
Tabla 27.	Distribución de frecuencia de tamaño y estados de madurez de camarón nailon	133
Tabla 28.	Distribución del estado de madurez embrionario de hembras ovíferas de camarón nailon por Región.	134
Tabla 29.	Distribución de frecuencia por rango de profundidad y estados de madurez de camarón nailon.	136

Tabla 30.	Proporción sexual (%) de los ejemplares de camarón nailon medidos en el muestreo de frecuencia de tallas por región.	.137
Tabla 31.	Proporción sexual a la talla en camarón nailon, entre la II y IV Regiones	.138
Tabla 32.	Proporción sexual a la talla en camarón nailon, entre la V y VIII Regiones	.139
Tabla 33.	Listado de las especies que conforman la fauna acompañante en las capturas de camarón nailon. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: 0.0 = <0.05	
Tabla 34.	Listado de las especies que conforman la fauna acompañante en las capturas de camarón nailon, ordenados por región. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: 0.0 = <0.05	.143
Tabla 35.	Fauna acompañante en las capturas de camarón nailon, ordenados por estratos de profundidad. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: $0.0 = <0.05$.146
Tabla 36.	Especies con aporte mayor a 0,1% respecto de la captura total de la fauna acompañante utilizados en los análisis multivariados; n = 474 lances.	.149
Tabla 37.	Número de lances utilizados en análisis multivariados ordenados por Región (latitud) y profundidad; n = 474 lances.	.149
Tabla 38.	Distribución latitudinal (grados) y batimétrica (metros) de los grupos identificados	.152
Tabla 39.	Fauna acompañante en las capturas de camarón nailon ordenada por los ensambles identificados mediante métodos de clasificación y ordenación. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: 0.0 = <0.05	.152
Tabla 40.	Análisis de Similitud (ANOSIM) para probar la existencia de diferencias significativas entre los ensambles faunísticos identificados a partir de la matriz de similitud de Bray-Curtis; estadígrado $p = 0.001$.	.154
Tabla 41.	Especies de mayor contribución a la similitud de las muestras (lances) en cada grupo	.155
Tabla 42.	Especies de mayor contribución a la disimilitud entre grupos.	.156
Tabla 43.	Información de la densidad de camarón nailon (ton/ hora de arrastre) obtenida de los proyectos FIP ejecutados entre los años 2003 y 2009.	
Tabla 44.	Función de log-verosimilitud considerando tres funciones de distribución de probabilidad para construir la matriz de transición del crecimiento	.165
Tabla 45.	Resumen de la evaluación de la biomasa total, explotable de camarón nailon, tasa de explotación anual, y comparación entre la biomasa evaluada en los cruceros con la salida del modelo, II-VIII Región	.169
Tabla 46.	Tabla de decisión para las diferentes políticas de explotación definidas para el camarón nailon de la unidad de pesquería de la II-VIII Regiones. La función de desempeño es la razón entre la biomasa explotable al final de 10 años de proyección y la biomasa explotable del 2008.	.173
Tabla 47.	Especies de mayor importancia relativa de la fauna acompañante respecto de la captura total. IRFA= índice de importancia relativa respecto a la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo camarón nailon.	.181

Tabla 48.	Especies de mayor importancia relativa de la fauna acompañante ordenadas por Región y profundidad (nombres de las especies señaladas por los acrónimos usados en todas	
	las tablas del texto).	182
Tabla 49.	Lista de participantes al Taller Técnico de Difusión de Resultados del Proyecto FIP Nº 2008-17	184

INDICE DE FIGURAS

Fig. 1.	Distribución latitudinal de los estratos a partir de los resultados del Proyecto FIP 2004- 10	20
Fig. 2.	Ejemplo de las "capas temáticas" de parte de la Región de Coquimbo y la información desplegada en forma paralela proporcionada por el SIG.	24
Fig. 3.	Distribución espacial de la densidad de langostino amarillo en el Foco 14 identificado en el marco del Proyecto FIP 2004-11. Izquierda: mapa de superficie. Derecha: mapa de contornos	31
Fig. 4.	Mosaicos de Delaunay y Dirichlet para un conjunto de datos espaciales	46
Fig. 5.	Mosaico Dirichlet de un conjunto de datos espaciales antes y después de la inserción del punto P_n	48
Fig. 6.	Diagrama del mecanismo de inserción de un punto fuera del polígono convexo (a) y generación de un nuevo polígono de estimación (b, c)	51
Fig. 7.	Relación entre los Triángulos de Delaunay (izquierda) y los polígonos de Voronoi (derecha). Tomado de Kulka <i>et al.</i> (2005)	52
Fig. 8.	(A) Mapa de probabilidad de exceder el valor umbral de 1,2 ton/km² de <i>Merluccius gayi</i> ; (B) clasificación de zonas con valores mayores y menores al nivel umbral, de acuerdo a una probabilidad de 0,80; (C) focos de abundancia de <i>M. gayi</i> y <i>Pleuroncodes monodon</i> . Tomado del proyecto FIP N° 2004-11 (ejecutado por UCN + UdeC)	68
Fig. 9.	Mapeo de fondo, mostrando las características de los sedimentos y la posición de los lances realizados en el lugar (trazos amarillos). Tomado de Kostylev <i>et al.</i> (2003)	74
Fig. 10.	Distribución de frecuencias de tamaño de machos de camarón nailon (<i>H. reedi</i>). Focos 1 a 6.	94
Fig. 11.	Distribución de frecuencias de tamaño de machos de camarón nailon (<i>H. reedi</i>). Focos 7 a 14.	95
Fig. 12.	Distribución de frecuencias de tamaño de machos de camarón nailon (<i>H. reedi</i>). Focos 15 a 20.	96
Fig. 13.	Distribución de frecuencias de tamaño de machos de camarón nailon (<i>H. reedi</i>). Focos 21 a 26.	97
Fig. 14.	Distribución de frecuencias de tamaño de hembras de camarón nailon (<i>H. reedi</i>). Focos 1 a 6.	98
Fig. 15.	Distribución de frecuencias de tamaño de hembras de camarón nailon (<i>H. reedi</i>). Focos 7 a 14.	99
Fig. 16.	Distribución de frecuencias de tamaño de hembras de camarón nailon (<i>H. reedi</i>). Focos 15 a 20.	.100

Fig. 17.	Distribución de frecuencias de tamaño de hembras de camarón nailon (<i>H. reedi</i>). Focos 21 a 26.	101
Fig. 18.	Distribución de frecuencias de tamaño de camarón nailon (<i>H. reedi</i>), sexos combinados por región	102
Fig. 19.	Distribución de frecuencias de tamaño de machos de camarón nailon (<i>H. reedi</i>), por región.	104
Fig. 20.	Distribución de frecuencias de tamaño de hembras de camarón nailon (<i>H. reedi</i>), por región	105
Fig. 21.	Disposición espacial de los lances de pesca de camarón nailon entre la II y VIII regiones, año 2008. Puntos rojos = lances positivos para camarón; puntos grises = lances negativos.	109
Fig. 22.	Disposición espacial de los focos de abundancia de camarón nailon (<i>H. reedi</i>). La línea azul representa el límite del Area de Reserva de la Pesca Artesanal (ARPA)	110
Fig. 23.	Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua) de camarón nailon (<i>H. reedi</i>) en la macrozona norte (izquierda) y macrozona sur (derecha).	113
Fig. 24.	Centro de gravedad (puntos negros) de la densidad poblacional (ton/Km²) de camarón nailon (<i>H. reedi</i>) en sentido latitudinal entre la II y VIII Regiones. Las barras verticales representan la inercia (<i>I</i>).	114
Fig. 25.	Curvas de Lorenz para la distribución de la densidad poblacional (ton/Km²) de camarón nailon (<i>Heterocarpus reedi</i>) en la unidad de pesquería norte (II-IV Regiones, línea azul), unidad de pesquería sur (V-VIII Regiones, línea roja) y para toda en área de estudio (línea negra)	115
Fig. 26.	Evolucion temporal del indice de Gini (línea roja) entre el año 200 y 2008, para la distribución de la densidad poblacional (ton/km²) de camarón nailon (<i>H. reedi</i>), y la biomasa total (tons, línea negra) en toda en área de estudio	116
Fig. 27.	Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua]) de camarón nailon (<i>H. reedi</i>) en la macrozona norte (izquierda) y macrozona sur (derecha).	122
Fig. 28.	Estimación del área de los focos de abundancia de camarón nailon (<i>H. reedi</i>) según el enfoque geoestadistico trasitivo (café liso) y el método de vecinos naturales (polígonos achurados). Izquierda: subestimación de los Focos 9 y 10. Derecha: sobreestimación del Foco 16.	129
Fig. 29.	Distribución de frecuencia de tamaños de las hembras ovíferas de camarón nailon por estado de desarrollo de los huevos.	
Fig. 30.	Proporción sexual de camarón nailon, por foco de abundancia	.140
Fig. 31.	Análisis de Dendrograma de la CPUE de la fauna acompañante presente en las capturas de camarón nailon en las Regiones II a VIII (n = 474 lances).	150
Fig. 32.	Análisis de Ordenación o Escalamiento Multidimensional (MDS) de la CPUE de la fauna acompañante presente en las capturas de camarón nailon en las Regiones II a VIII. Los números 1 a 5 corresponden a los ensambles identificados. El grupo "ne" corresponde lances que en el dendrograma no constituyen ningún grupo; n = 474 lances.	151
Fig. 33.	Disposición espacial de los tipos de sedimentos en la zona de Coquimbo	.160
Fig. 34.	Disposición espacial de los datos de cpue (ton/hora de arrastre) obtenidos en los proyectos FIP de Evaluación directa 2003-2009 sobre los tipos de sedimento	161
Fig. 35.	Densidad poblacional de camarón nailon (CPUE, Kg/hora de arrastre) por tipo de sedimento.	162

Fig. 36.	Distribución de la densidad poblacional de camarón nailon por tipo de sedimento	163
Fig. 37.	Tasa de crecimiento (mm/año) de camarón nailon en función de la longitud. La línea representa la tasa promedio de 200 valores alternativos e igualmente probables y los círculos vacíos una realización. Los valores fueron generados a partir de los parámetros de crecimiento de Roa y Ernst (1996).	164
Fig. 38.	Biomasa vulnerable de camarón nailon evaluada mediante le método de área barrida (puntos) y ajuste del modelo a los datos (línea). Nótese la ausencia de dato para el año 2007, cuando no se realizó evaluación directa de la especie.	166
Fig. 39.	Patrón de explotación asumido para la pesquería y estimado para la fracción vulnerada en los cruceros de evaluación directa por área barrida.	167
Fig. 40.	Estructura de tallas de camarón nailon en los cruceros de evaluación directa. Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación (1996 – 2002)	167
Fig. 41.	Estructura de tallas de camarón nailon en los cruceros de evaluación directa. Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación (2003-2008).	168
Fig. 42.	Tendencias de biomasa de camarón nailon (II-VIII Región)	.169
Fig. 43.	Reclutamiento en número de individuos de camarón nailon a la longitud de 10 mm LC, II-VIII Región.	170
Fig. 44.	Evolución de la tasa de explotación en función de la biomasa explotable de camarón nailon en el periodo 1995-2008, II – VIII Regiones.	171
Fig. 45.	Evolución de la tasa de explotación en función de la biomasa desovante (hembras maduras) de camarón nailon en el periodo 1995-2008.	171
Fig. 46.	Biomasa explotable de camarón nailon en 2008.	172
Fig. 47.	Perfile de probabilidad acumulada de la función de desempeño según cuatro políticas de manejo de la pesquería de camarón nailon (II-VIII Regiones)	174
Fig. 48.	Invitación a participar en el Taller de Difusión de resultados del proyecto FIP 2007-19 y díptico con las actividades, realizado en Coquimbo, el 8 de mayo de 2009	185
Fig. 49.	Distribución espacial de la densidad (tons/km²) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 1 a 4)	220
Fig. 50.	Distribución espacial de la densidad (tons/km²) de camarón nilon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 5 a 8)	221
Fig. 51.	Distribución espacial de la densidad (tons/km²) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 9 a 11)	222
Fig. 52.	Distribución espacial de la densidad (tons/km²) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 12 a 15)	223
Fig. 53.	Distribución espacial de la densidad (tons/km²) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 15 a 16)	224
Fig. 54.	Distribución espacial de la densidad (tons/km²) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 16 a 19)	225
Fig. 55.	Distribución espacial de la densidad (tons/km²) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 20 a 23)	226
Fig. 56.	Distribución espacial de la densidad (tons/km²) de camarón nailon (<i>H. reedi</i>) entre la II y VIII Regiones (Focos 24 a 26)	

INDICE DE ANEXOS

Anexo 1.	Fechas y lugares geográficos de los muestreos	198
Anexo 2.	Registros de posición, distancia lineal recorrida, área barrida, abertura de punta de alas, captura y cpua de camarón nailon.	201
Anexo 3.	Características técnicas de las embarcaciones y planos de las redes utilizadas	214
Anexo 4.	Sistema NETMIND para medición de APA	217
Anexo 5.	Distribución espacial de la densidad (tons/km²) de camarón nailon por zona de análisis geoestadístico	219
Anexo 6.	Biomasa (tons) y abundancia (miles de ejemplares) de camarón nailon por caladero, sexo, dentro y fuera del ARPA y Región	228

1. Objetivos

1.1. Objetivo General

Estimar la biomasa y abundancia de camarón nailon, en el litoral comprendido entre la II y VIII Regiones, a través de una evaluación directa con el método de área barrida.

1.2. Objetivo Específicos

- 1.2.1. Determinar la distribución espacial del recurso, en el área de estudio.
- 1.2.2. Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, de recurso en el área de estudio, y por región y focos de abundancia, según corresponda.
- 1.2.3. Determinar la condición reproductiva del camarón nailon, en el área y período de estudio.
- 1.2.4. Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de este recurso durante los cruceros de evaluación.
- 1.2.5. Registrar y analizar las condiciones ambientales asociadas a los principales focos de abundancia del recurso.
- 1.2.6. Analizar la situación actual del recurso en la zona de estudio, considerando los antecedentes de la pesquería y los resultados del proyecto.

2. Antecedentes

2.1. Generalidades

Regularmente, el ordenamiento pesquero requiere de resultados de la evaluación de los stocks como uno de sus antecedentes más relevantes. Al respecto, se puede mencionar dos familias de métodos, a saber, indirectos y directos para la determinación de la abundancia y biomasa. Los *métodos indirectos* requieren una serie de varios años de datos de capturas totales, composición numérica por edad en la captura y esfuerzo de pesca, con una amplia cobertura espacial y temporal de muestreos rutinarios y de registros del desembarque. La serie de datos debe cubrir, al menos, tantos años como grupos de edad estén presentes en la pesquería, lo que, en el caso del camarón nailon, es de 7 años en machos y 6 en hembras o incluso más (Acuña *et al.*, 1997, 2002).

Los *métodos directos* se caracterizan por su relativa rapidez y sencillez, y se aplican frecuentemente a la evaluación de crustáceos bentónicos, siendo uno de los más utilizados el **método del área barrida**. Desde mediados de los años 90 este método ha sido aplicado a recursos pesqueros de las Regiones III y IV, como por ejemplo a langostino amarillo (Pavez *et al.*, 1994), Acuña *et al.* (1995) y otros. Acuña y Arancibia (1996) recurrieron a esta metodología para evaluar la biomasa del camarón nailon en las Regiones II a IV mediante el uso de 15 embarcaciones arrastreras camaroneras, siguiendo un riguroso esquema científico o de muestreo en una pesca de investigación autorizada por la Subsecretaría de Pesca a la Universidad Católica del Norte (Resolución Nº 1.882 de 18.12.1995), y que posteriormente fue utilizado por Arredondo (1996) y Roa *et al.* (1999) en evaluaciones directas de esta misma especie de la II a la VIII Regiones.

Anteriormente, Arancibia y Mora (1992) aplicaron el método de área barrida para evaluar la biomasa de merluza común (*Merluccius gayi*) entre San Antonio y Corral utilizando información obtenida a bordo de embarcaciones industriales arrastreras merluceras, sin desviar la intencionalidad de captura, entre mediados de 1991 y mediados de 1992. Un tiempo después, Arancibia & Mora (1995) aplicaron este método a la evaluación de merluza común bajo un esquema de muestreo científico usando también naves comerciales merluceras arrastreras.

El camarón nailon (*Heterocarpus reedi*) fue descrito por Bahamonde (1955) a partir de ejemplares capturados en Valparaíso y San Antonio en alrededor de 320 m de profundidad, y es considerada una morfoespecie, la única conocida para el Océano Pacífico Suroriental. El área de dispersión se extiende frente a la costa chilena entre Taltal (25°19' S) y Puerto Saavedra (39°00' S), a profundidades entre 155 y 424 m, con fondo de arcilla, roca sedimentaria (laja), arena fangosa o fango (Bahamonde y Henríquez, 1970), aunque Acuña y Arancibia (1996) detectaron su presencia en 23°48' S, extendiendo su distribución hasta el sur de Antofagasta.

Bahamonde y Henríquez (1970) entregan datos biológicos y de explotación de la especie. Su aparición en la pesquería se inicia en 1950 como fauna acompañante de merluza común, registrándose capturas comerciales desde 1954 (Arana & Nakanishi, 1971), siendo Coquimbo, Guayacán, Quintero, Valparaíso, San Antonio, Talcahuano y Tomé los puertos de desembarque. Arana y Tiffou (1970) estudiaron la madurez sexual, sexualidad y fecundidad de la especie en muestras obtenidas frente a Valparaíso, informando que a los 25,5 mm de longitud cefalotoráxica el 50% de las hembras portaban huevos. Posteriormente, Andrade y Báez (1980) estudiaron la fauna acompañante de crustáceos decápodos en la pesquería de camarón nailon en la zona de Quintero. Más tarde, Acuña *et al.* (1995) analizaron las capturas de camarón nailon como fauna acompañante en la pesca de langostino amarillo (*Cervimunida johni*). Acuña y Arancibia (1996) analizaron la comunidad en las capturas de camarón nailon y lo propio ha ocurrido en evaluaciones directas posteriores de camarón nailon en su unidad de pesquería (Roa *et al.*, 1998; Acuña *et al.*, 2000, 2002, 2007, 2008; Escuela de Ciencias del Mar, 2001, Arana *et al.*, 2003, 2004, 2005, 2006).

Los estudios más recientes del camarón nailon en las Regiones II a VIII se deben a proyectos licitados por el Fondo de Investigación Pesquera (FIP) y otros más antiguos financiados directamente por los industriales pesqueros de la IV Región (Tabla 1), los que han permitido actualizar el conocimiento de aspectos tales como abundancia y biomasa, caracterización de la operación de la flota, estandarización del esfuerzo de pesca, abundancia relativa (CPUE), ciclo reproductivo y ojiva de madurez, parámetros de crecimiento, y composición e importancia relativa de fauna acompañante. En la Tabla 1 se resume todos los estudios financiados por el FIP para evaluaciones directas e indirectas del recurso camarón nailon desde 1996 a la fecha.

Tabla 1. Proyectos de evaluación directa e indirecta de camarón nailon licitados por el FIP y financiados por empresas pesqueras, instituciones ejecutoras y autor(es). El año 2007 no se realizó el estudio correspondiente.

Código Proyecto	Nombre proyecto	Ejecutor	Fuente		
FIP N° 95-06	Análisis de la pesquería y evaluación indirecta del stock de camarón nailon (II a VIII Regiones).	UCN + INPESCA	Acuña et al. (1997).		
FIP N° 96-09	Evaluación directa del stock de camarón nailon en la zona centro-norte.	Universidad Católica de Valparaíso	Pavez. (1996)		
Empresas Pesqueras de la IV Región	Evaluación directa del stock de camarón nailon por el método de área barrida en la zona de operación de la flota arrastrera de las Regiones III y IV.		Acuña & Arancibia (1996)		
FIP N° 97-24	Evaluación directa del stock de camarón nailon en el litoral de la II a VIII Regiones.	Instituto de Fomento Pesquero	Canales <i>et al</i> . (1999)		
FIP N° 98-03	Evaluación directa de camarón nailon entre la II y VIII Regiones.	Universidad de Concepción	Roa <i>et al</i> . (1999)		
Empresas Pesqueras de la IV Región	Monitoreo de la pesquería de crustáceos realizada por la flota de la IV Región.	UCN	Acuña <i>et al</i> . (1999)		
FIP N° 99-08	Evaluación directa de camarón nailon entre la II y VIII Regiones, 1999.	UCN + UdeC	Acuña et al. (2000)		
Empresas Pesqueras de la IV Región	Monitoreo de la pesquería de crustáceos realizada por la flota de la IV Región, temporada 1999.	UCN	Acuña <i>et al</i> . (2000)		
FIP N° 2000-05	Evaluación directa de camarón nailon entre la II y VIII Regiones, 1999.	UCV + IFOP	Arana <i>et al.</i> (2000)		
Empresas Pesqueras de la IV Región	Monitoreo de la pesquería de crustáceos realizada por la flota de la IV Región, temporada 2000.	UCN	Acuña <i>et al.</i> (2001)		
FIP N° 2001-05	Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2001.	UCN + UdeC	Acuña <i>et al.</i> (2002)		
FIP N° 2002-05	Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2002.	UCV + IFOP	Arana <i>et al</i> . (2003)		
FIP N° 2003-05	Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2003.	UCV + IFOP	Arana <i>et al.</i> (2004)		
FIP N° 2004-10	Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2004.	UCV + IFOP	Arana <i>et al.</i> (2005)		
FIP N° 2005-10	Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2005.	UCV + IFOP	Arana <i>et al</i> . (2006)		
FIP N° 2006-11	Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2006.	OCN + UdeC	Acuña <i>et al</i> . (2007)		
Este estudio	Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2008.	UCN + UdeC			

2.2. Administración de la pesquería de camarón nailon

Con respecto al marco legal que regula la pesquería del camarón nailon, hasta fines de 1994 y de acuerdo a la Ley General de Pesca y Acuicultura (LGPA), ésta se encontraba sometida al régimen general de acceso en las Regiones II a VIII. Con la aplicación del Artículo 20 de dicha Ley,

mediante D.S. Nº 627 del MINECOM, de 15.11.1994, publicado en el D.O. de 5.12.1994, se suspendió transitoriamente por 12 meses la recepción de solicitudes y el otorgamiento de autorizaciones de pesca extractiva industrial del recurso camarón nailon, incluida su fauna acompañante, en todo el litoral comprendido entre el límite norte de la II Región y el límite sur de la VIII Región. Luego de concluido el plazo señalado en el D.S. existían dos alternativas, a saber: declarar la unidad de pesquería en estado de plena explotación o en régimen general de acceso. En ese momento, y mediante el D.S. 611 de 6.10.1995 se declaró a la pesquería de este recurso en estado y régimen de plena explotación.

Una vez concretado el cambio de estado a plena explotación de esta pesquería del camarón nailon, se fijó una cuota de 8.000 ton para el año 1996 (D.E. Nº 259 de 1995), agregándose luego 2.000 ton (D.E. Nº 222 Exento de 26.09.1996). Posteriormente, se ha ido estableciendo anualmente cuotas globales, con un rango entre 10.000 ton como máximo (año 1997) y 4.770 ton como mínimo (año 2004), volviendo la pesquería a cuotas globales levemente mayores a 5.000 ton los años 2005, 2006, 2007 y 2008. Desde el año 1998, las cuotas anuales comenzaron a ser fraccionadas en cuatrimestres, a saber: 1 de enero al 30 de abril, 1 de mayo al 31 de agosto y 1 de septiembre al 31 de diciembre. También en el año 1998, se estableció por primera vez una veda biológica reproductiva para la especie en toda el área de la pesquería entre el 1 de julio y 31 de agosto (D.E. Nº 92 de 22.01.1998), la que se mantiene vigente hasta ahora.

A partir del año 2001, al fraccionamiento temporal de la cuota anual de camarón nailon se agregó uno por flota (industrial y artesanal), la reserva de una cuota de investigación y del recurso como fauna acompañante de las pesquerías de langostino amarillo, langostino colorado y merluza común. Posteriormente, el año 2003 se incorporó el fraccionamiento regional, con lo cual se completa la división temporal y por flota con la dimensión espacial. Durante los años 2003 al 2005 se aplicó veda extractiva para el recurso de la VI a VIII Regiones (Tabla 2).

Paralelamente, debido a un nivel de biomasa notablemente disminuido del stock de camarón nailon, según lo mostraron las evaluaciones de stock y la evolución de los rendimientos de pesca, se estableció una veda total entre el límite norte de la V Región y el límite sur de la X Región (D.E. N° 423 de 22.12.2000) desde el 1 de enero al 31 de diciembre de 2001, lo que se mantuvo

hasta el año 2003 cuando se reabre, a partir del 1º de enero, la pesquería de la especie en la V y VI Regiones (D.E. Nº 1.129 de 26.12.2002). El recurso vuelve a ser declarado en veda en la VI Región a fines del 2003 (D.E. Nº 856 de 22.12.2003). En la Tabla 2 se presenta un resumen de las cuotas globales anuales de este recurso en el período 2000-2008, las distintas fracciones intra-anuales y los Decretos correspondientes. En esta se observa que desde el año 2003 en adelante la proporción mayor de la cuota industrial ha ido cambiando desde la III a la IV región y posteriormente a la VII Región (2006 - 2007) para regresar nuevamente a la IV Región en la cuota del 2008.

Otro tema importante de administración para la pesquería del camarón nailon, por su eventual presencia dentro del área de reserva a la pesca artesanal (ARPA) corresponde al ejercicio de actividades pesqueras extractivas en dicha zona o "ventanas de penetración o perforaciones", las que se han establecido secuencialmente en la III y IV Regiones a partir del año 1997 (Resoluciones Nº 314 modificada por la Nº 339 de 13.03.1998; Resoluciones Nº 574 de 15.03.2000 y Nº 575 de 15.03.2000; Resoluciones Nº 735 de 15.04.2002 y Nº 734 de 16.04.2002; y Resoluciones Nº 1030 de 15.04.2004 y Nº 1543 de 4.06.2004).

Una última medida de administración aplicada a la pesquería del camarón nailon desde el año 2001 corresponde al Límite Máximo de Captura por Armador (LMCA), mediante el cual se establece fracciones de cuota por armador participante en la pesquería (Resolución Nº 132 de 25.01.2001).

Por último, es destacable que, por primera vez desde el año 1996, en el año 2007 no se realizó ningún estudio de evaluación directa de camarón nailon en el área de su Unidad de Pesquería, lo que significó romper irremediablemente la secuencia que se había logrado estructurar en más de 10 años. No ha habido ninguna explicación concreta al respecto por parte de la agencia del Estado que administra los recursos pesqueros.

Tabla 2. Cuotas globales anuales de captura (ton) de camarón nailon asignadas en el período 2000-2008, fracciones intra-anuales y Decretos correspondientes en la unidad de pesquería II-VIII Regiones.

		20	001	2002		2003		2004		2005		2006		2007		2008	
Cuatrimestre			Artesanal	Industrial Artesanal				Industrial Artesanal		Industrial Artesanal		Industrial Artesanal					
Cuota Sp. Objetivo	5.000	4.709		4.650		4.630		4.630		4.925		4.890		4.890		4.945	
Cuota por flota	•	3.767	942	3.720	930	3.632	908	3.644	911	3.940	985	3.912	978	3.912	978	3.956	989
1° Ene 31 Mar.	2.500*	1507 *	377 *	1.353	338												
1° Abr. – 31 Ago.	1.000 **	753 **	188 **	1232	308												
1° Sep 31 Dic.	1.500	1.507	377	1.135	284												
Cuota II Región						323	35	310	20	170	39	197	20	196	49	105	35
1º Ene 31 Mar.						100	11	96	6	53	11	89	9	88	22	47	16
1° Abr. – 31 Ago.						107	12	102	7	56	11	49	5	49	12	26	9
1° Sep 31 Dic.						116	12	112	7	61	17	59	6	59	15	32	10
Cuota III Región						1.409	435	1.041	418	602	294	393	265	421	214	536	208
1° Ene 31 Mar.						437	135	323	130	187	78	177	119	190	96	241	94
1° Abr. – 31 Ago.						465	143	343	138	198	83	98	66	105	54	134	52
1° Sep 31 Dic.						507	157	375	150	217	133	118	80	126	64	161	62
Cuota IV Región						727	245	1.089	313	1.378	395	980	357	898	324	1.466	350
1° Ene 31 Mar.						225	76	338	97	427	105	441	161	404	146	660	158
1° Abr. – 31 Ago.						240	81	359	103	455	112	245	89	225	81	366	88
1° Sep 31 Dic.						262	88	392	113	496	178	294	107	269	97	440 537	104 380
Cuota V Región						505	193	775	134	728	256	289	306	226	361		
1º Ene 31 Mar.						157	60	240	42	226	68	130	138	102	162	242	171
1° Abr. – 31 Ago. 1° Sep 31 Dic.						167 181	64 69	256 279	44 48	240 262	73 115	72 87	77 91	56 68	90 109	134 161	95 114
Cuota VI Región						668	09	2/9	46	202	113	368	10	479	109	269	5
1º Ene 31 Mar.						208						166	5	215	5	121	2
1° Abr. – 31 Ago.						208						92	2	120	2	67	2
1° Sep 31 Dic.						240						110	3	144	3	81	2
Cuota VII Región						240	l	429	26	1.062	1	1.246	10	1.213	10	900	5
1° Ene 31 Mar.								133	8	155		560	5	546	5	405	2
1° Abr. – 31 Ago.								142	9	166		312	2	303	2	225	1
1° Sep 31 Dic.								154	9	741		374	3	364	3	270	2
Cuota VIII Región												439	10	479	10	143	6
1° Ene 31 Mar.												197	5	215	5	64	2
1° Abr. – 31 Ago.												110	2	120	2	36	2
1° Sep 31 Dic.												132	3	144	3	43	2
Investigación		1	00	112		1	70	1	40	1.	30	1	60	1:	55	15	i5
Fauna acompañante		1	91	38		72	18	60	15	60	15	64	16	68	17	80	20
En Langostino colorado		5% en neso	/viaje (120)	1% en peso / v	riaje (18)	36	9	36	9	36	9	25	5	32	11	25	7
En Langostino amarillo III-IV	10% en peso/viaje		o/viaje (70)	2% en peso / v	3 (/	28	7	16	4	16	4	30	10	25	5	30	12
En Langostino amarillo V-VIII	- 170 en peso, viuje	5 / 0 cm pcs		= . o en peso / v			,		·							12	
En Merluza común		1% en pes	so/viaje (1)	1% en peso /	viaje (1)	4	1	4	1	4	1	5		6		7	
En Gamba		2 / 2 2 pc.		, _F ,		4	1	4	1	4	1	1	1	5	1	6	1
Total anual (tons)	5.000	5.0	000	4.800		4.3	800	4.7	770	5.1	130	5.	130	5.1	130	5.2	00
	D.Ex. Nº 502 de 24- 12-1999	D.Ex. Nº 43	7 26-12-2000	D.Ex. Nº 923 o 2001	de 31-12-	D.Ex. Nº 1 .12-	.106 de 31- 2002			D.Ex. Nº 1.019 de 16-12-2004 modificado		D.Ex. Nº 1.560 de 21.12.2005		D.Ex. Nº 1.523 de 21-12- 2006		D.Ex. Nº 1.775 de 18.12.2007	
Decreto									por D. Ex. Nº 1336 de 08-11- 2005								
										20	703						

^{* 1°} Ene-30 Abr.; ** 1° May.-31 Ago.

3. Propuesta Metodológica

3.1. Generalidades

En atención a las Bases Especiales del Proyecto FIP Nº 2008-17 se realizó un crucero de evaluación directa por el método de área barrida desde la II a la VIII Regiones, el que se ha venido aplicando en Chile desde inicios de los años 80 para los stocks de langostino colorado, langostino amarillo y camarón nailon.

En las operaciones de pesca se utilizó la nave pesquera de alta mar (PAM) FOCHE y la lancha a motor (L/M) ISABEL S, ambos arrastreros langostineros - camaroneros. El PAM operó por fuera del Área de Reserva de la Pesca Artesanal (ARPA) y la L/M operó por dentro de aquella zona. Ambos tipos de embarcaciones se ajustaron al esquema general de muestreo detallado más adelante.

3.2. Estandarización de las naves

Como se utilizó más de una nave para efectuar los lances de pesca en la extensa área de estudio se estandarizó el poder de pesca de cada nave, ya que se asumió que no son homogéneas. Este procedimiento metodológico es fundamental para proceder después con la estimación de la captura por unidad de esfuerzo (cpue) a la forma estandarizada (CPUE).

La estandarización de las naves se justifica si aquellas no son homogéneas, esto es, en cuanto a sus características físicas o en su poder de pesca. El método más directo se encuentra en FAO Documentos Técnicos de. Pesca 306/1 (1995, págs. 303 y 304). Allí se define "la potencia de pesca relativa" de cada nave i, que se denomina "poder de pesca relativo" (ρ_i), como:

$$\rho_i = \frac{CPUE_i}{CPUE_s}$$

donde $CPUE_i$ corresponde a la captura por unidad de esfuerzo estándar; i representa a la i-ésima nave y s a la nave estándar.

Se seleccionó la nave estándar, de entre las que participaron en el proyecto, después de analizar las CPUE para todos los lances de pesca efectuados por nave durante el período de estudio. El criterio de selección de la nave estándar correspondió a aquella nave que presentó el menor coeficiente de variación (CV) de la CPUE. Se comparó las CPUE promedio entre naves con varianzas desiguales (Sokal & Rohlf, 1979) mediante la aplicación del test t-Student para probar la existencia de diferencias significativas.

3.3. Análisis de las redes de arrastre y levantamiento de planos.

Según el numeral 5.5 de las Bases Especiales se debe adjuntar los planos de los artes de pesca bajo las normas que sugiere el Catálogo FAO de Planos de Aparejos de Pesca (FAO, 1972). Al respecto, debido a que se ha efectuado proyectos análogos en los años recién pasados, ya se disponía de los planos de las naves que operaron en este proyecto, los que fueron dibujados con el software qCAD de Linux de diseño de planos, para lo que se registró las dimensiones de las estructuras de la red tales como relinga, borlón y lachas, así como la cantidad y tamaño de mallas por cuerpo, las dimensiones de los paños, el material y diámetro de los hilos, y la razón de corte de cada cuerpo, tanto para el panel superior como para el inferior de las redes. Este trabajo ha sido efectuado por ingenieros y técnicos pesqueros. No obstante, es política del consultor revisar los elementos con los que se realiza la evaluación y, evidentemente, entre ellos se verificaron las características de las redes de las naves que participaron del estudio.

3.4. Medición directa de la abertura de punta de alas (APA).

La medición electrónica directa de la APA se efectuó con el Sistema NETMIND. Durante la ejecución del crucero se efectuaron mediciones electrónicas de APA de manera instantánea durante todo el lance conectando el equipo NETMIND con un notebook a bordo y almacenando los registros en memoria. A la vez, con un tercer sensor electrónico adosado a la red se pudo conocer exactamente el tiempo cronológico cuando la red toca fondo en el calado, y comienza efectivamente a operar, hasta el término del lance, cuando se inicia el virado. Cabe señalar que, en tal sentido, para cada lance de pesca que cuenta con este sensor de contacto, se registra la hora

en que se suelta los portalones, la hora en que se fija el winche y la hora en que la red toca el fondo.

Con el sistema NETMIND se registra continuamente la APA mediante sensores sónicos adosados a la red en su parte anterior, lo que permite medir la distancia entre las puntas de alas. El sistema de transmisión sónico para registrar APA es clásico y consiste en que un transmisor (master) envía una señal sónica (onda sonora) desde la punta de ala de babor (o estribor), la que es recibida y respondida por otro sensor ubicado en la punta de ala de estribor (o babor) de la red. Seguidamente, la información sónica es transmitida a un hidrófono adecuadamente ubicado por debajo del casco de la nave. La información se registra en un computador al que se conecta en forma serial al hidrófono, y que posee un software *ad hoc* que proporciona el proveedor de NETMIND, obteniéndose archivos con registros a intervalos de tiempo fijados por el usuario, en cada lance.

3.5. Registros de información (datos) del lance y capturas

3.5.1. Datos del lance

A bordo, además de los registros señalados anteriormente, en cada lance se registró adecuadamente (grados, minutos y segundos con 2 decimales) la geoposición con GPS cuando la red toca fondo y al inicio del virado (inicio y fin del lance, respectivamente). El momento en que la red está efectivamente sobre el fondo fue registrado mediante un sensor de ángulo de NORTHSTAR Technicals ubicado en el piso anterior de la red. La profundidad (m) del piso marino se registró mediante un ecosonda en los mismos tiempos del lance. La velocidad de arrastre se obtuvo de las lecturas del mismo GPS a distintos tiempos de operación de la red, determinándose después el promedio y la varianza. La distancia recorrida por la red entre los tiempos de inicio del arrastre sobre el fondo y el virado se determinó con el Teorema de Pitágoras (FAO Doc. Téc. Pesca 306/1, pág. 351, año 1995).

3.5.2. Datos de capturas

3.5.2.1. Captura por lance

La captura (Kg) a bordo para la especie objetivo se registró de acuerdo a procedimientos estándar para este tipo de estudios, encajonando toda la captura en bandejas (cajas) apilables, una vez depositada la pesca sobre la cubierta y abierto el copo. Las cajas se llenan del recurso objetivo (camarón nailon) y se las pesa todas a bordo con una báscula de colgar PESAMATIC compuesta de una Celda de Carga marca REVERE TRANSDUCERS U.S.A., tipo "S" Modelo 9363, y un Indicador Digital GSE-350/SS LCD con un filtro especialmente diseñado para aplicaciones industriales en ambientes hostiles (altamar), permitiendo registrar el peso exacto de la captura.

En cada lance, la fauna acompañante fue separada de la(s) especie(s) objetivo y se procedió a su muestreo y contabilización (en peso), según se detalla en la descripción metodológica del Objetivo Específico 4. Los procedimientos e identificación de especies han sido aplicados por el Equipo Profesional a este tipo de estudios, por ejemplo, en los proyectos FIP N°2003-03, FIP N°2004-11, FIP N° 2005-09, FIP N° 2006-04, FIP N° 2006-11, FIP N° 2007-19 y FIP N° 2008-16.

3.5.2.2. Captura estandarizada por lance

Para cada lance se estandarizó la captura por el área barrida por la red debido a que la distancia recorrida puede variar entre lances debido a la velocidad de arrastre de la nave (por causas como viento, estado del mar, velocidad de la corriente, piso marino, otros) y a que el tiempo de arrastre efectivo puede no ser siempre de 15 minutos (cambio repentino en la topografía del piso marino, otros). La captura (Kg) estandarizada, por lance, se obtiene simplemente como la captura del recurso objetivo en el lance dividido por la distancia efectivamente arrastrada por la red.

3.5.3. Muestreos de longitud cefalotorácica y biológico-específicos

El muestreo para determinar la distribución de tamaños (longitud cefalotorácica, LC) del recurso objetivo se realizó obteniendo, en cada lance con pesca, una muestra completamente aleatoria de ejemplares (machos y hembras). La muestra se obtiene de la captura después que ésta es

depositada sobre la cubierta de la embarcación. Si se asume que la distribución de la variable LC es normal (con media poblacional μ y varianza σ^2), entonces, para muestras grandes ($\alpha = 0.05$) se tiene que el tamaño de muestra (n) por lances es cercano a 300 ejemplares (sin diferenciar por sexo). Para muestreos biológico-específicos (por ejemplo, para registrar sexo, peso y tamaño), el tamaño muestral se presenta en el Objetivo Específico 3.

3.6. Diseño de muestreo

3.6.1. Método de muestreo

En cuanto a la distribución del recurso camarón nailon parece haber consenso en que aquella es una delgada cinta en sentido N-S, desde la II a la VIII Regiones, con el ancho promedio de unas pocas millas (4 mn). Sin embargo, dada la extensa distribución N-S (casi 1.600 km lineales), no parece razonable aceptar que la distribución del stock de camarón nailon sea continua. Esto es fundamental pues ayuda a precisar una estrategia de muestreo más *ad hoc* para este recurso que la que se ha venido utilizando y que ha consistido en transectas perpendiculares a la costa y equidistanciadas entre ellas (ver Arana *et al.*, 2004). En términos pesqueros, las preguntas que se debieron formular fueron las siguientes: ¿se distribuye el stock de camarón nailon en agregaciones? ¿es posible reconocer macro-estructuras agregacionales tipo bancos (en cuanto al recurso) o caladeros (en cuanto a la pesquería)?

La importancia de reconocer agregaciones es que permite precisar la mejor estrategia de muestreo. Nos hemos inclinado a suponer que los esquemas de muestreo propuestos históricamente para la evaluación del recurso camarón nailon mediante área barrida han sido ineficientes en discriminar la distribución espacial agregada del recurso, lo que ha traído como resultado que la distribución sea del tipo continua. En otras palabras, lo más probable es que tales resultados se deban a la incorrecta estrategia de muestreo utilizada más que a la distribución natural del recurso. En efecto, Pérez & Defeo (2003) señalan que las diferencias encontradas en el coeficiente de capturabilidad (q) del recurso camarón nailon entre las Regiones III y IV se deberían a diferentes "patches" (=agregaciones), refutando que la distribución sea continua.

En términos de la mejor estrategia de muestreo, con una distribución continua del stock lo más razonable es usar un muestreo homogéneo con transectas equidistantes, como lo han venido aplicando, por ejemplo, Arana *et al.* (2004). Sin embargo, si la distribución no fuere continua sino en "patches", como lo sugieren Pérez & Defeo (2003), entonces necesariamente el esquema de muestreo debe ser modificado, que es lo que se presenta en adelante.

Estrictamente hablando, una estrategia de muestreo requiere la definición de tres elementos básicos, a saber:

- la *unidad muestral*, que es el objeto que se mide y, por tanto, entrega la medida de la variable (biomasa) que se está investigando;
- el *proceso de aleatorización*, que asegura una adecuada representatividad y que la selección de las unidades muestrales se realizará sin sesgos; y, finalmente,
- el *tamaño muestral*, que garantiza un cierto nivel de confianza y una precisión determinada en la estimación de los estimadores de los parámetros de interés.

El objetivo típico para este tipo de estudios es estimar la abundancia N(A) dentro del área de estudio A, basándose en un plan de muestreo del área. Los diseños muestrales más conocidos establecen, mediante un adecuado proceso de aleatorización que considera la distribución espacial de las unidades muestrales, que cada muestra posible m de la población tiene la misma probabilidad p(m) de ser seleccionada. El objetivo final de la estrategia de muestreo tiene dos componentes fundamentales que nos ayudan a definir qué estrategia utilizar, y que son:

- obtener el máximo de información sobre la población objetivo con el menor esfuerzo muestral posible; y,
- generar estimadores óptimos, es decir, insesgados y de mínima varianza.

3.6.2. Estrategias muestrales

Para lograr estos objetivos, y considerando principalmente las propiedades distribucionales de la población en estudio, se definen habitualmente las siguientes estrategias muestrales:

3.6.2.1. Muestreo completamente aleatorio

Si la distribución de la población es uniforme, se puede utilizar una estrategia de aleatorización completa (irrestricta) denominada *muestreo aleatorio simple*. En este caso, las unidades muestrales son seleccionadas en base a criterios estrictamente aleatorios, obteniéndose un único estimador para la población completa. La principal desventaja del método es que en áreas de muestreo muy extensas es dificil asumir la misma distribución uniforme en toda la extensión de la población y, producto del mismo proceso de muestreo, si los tamaños muestrales son limitados (por razones de tiempo o de financiamiento, por ejemplo), algunas zonas pueden ser submuestreadas.

3.6.2.2. Muestreo estratificado

Si la uniformidad sólo se puede garantizar por sectores de la población, como ocurre en la mayoría de los casos, se puede utilizar la misma estrategia de selección aleatoria simple dentro de cada uno de los segmentos homogéneos de ella que se puedan considerar (internamente) uniformemente distribuidos. En este caso, la estrategia de muestreo se denomina *muestreo estratificado*, cada estrato representa precisamente a un sector uniforme dentro de la población y, por tanto, cada uno de ellos se evalúa independientemente de los demás. El estimador final no es, en tal caso, sino una suma ponderada de los resultados de cada estrato. Esta estrategia de muestreo tiene la ventaja, por sobre otras estrategias de muestreo, que tiende a minimizar las varianzas de los estimadores, reduciendo los tamaños muestrales mínimos necesarios para lograr un mismo nivel de precisión y confianza de éstos. Las ponderaciones utilizadas para las estimaciones finales, pueden depender tanto de los tamaños relativos de los estratos, como de sus varianzas, siendo esta última también un factor relevante en la determinación de los tamaños muestrales. En el caso de este estudio, además utilizaremos como criterio de estratificación las densidades medias observadas en las distintas áreas de extracción del recurso camarón nailon.

3.6.2.3. El muestreo sistemático

Es una estrategia utilizada principalmente en los casos en los cuales existen componentes distribucionales periódicas y/o gradientes geográficos o temporales asociadas a la variable de interés, en este caso la abundancia o densidad de la especie. Si el muestreo sistemático define un total de k-muestras sistemáticas, entonces el plan de muestreo se puede asumir como un muestreo estratificado de k-estratos, de cada uno de los cuales se extrae una muestra de tamaño uno.

La ventaja principal del muestreo sistemático, dados los requerimientos distribucionales mencionados, es que permite estimar la pendiente de la gradiente asociada, la que es un parámetro fundamental para la estimación de los totales poblacionales. La principal desventaja del método es que, en el caso de distribuciones no uniformes, emplea el mismo esfuerzo muestral en zonas de alta y de baja densidad, desperdiciando, en el segundo caso, el esfuerzo que debiera concentrarse en los focos de mayor abundancia.

3.6.2.4. Muestreo sistemático estratificado

Si la población se divide en regiones igualmente espaciadas que sean internamente homogéneas, entonces es posible tratar a cada una de los segmentos generados como estratos independientes, de cada uno de los cuales se obtiene una muestra estratificada. La estrategia de muestreo utilizada corresponde entonces a un *muestreo sistemático estratificado*. Si la distribución espacial se puede considerar relativamente uniforme dentro de cada estrato, entonces esta estrategia puede unir las ventajas relativas de ambas estrategias, sistemática y estratificada.

Los conceptos anteriores son fundamentales al momento de extraer conclusiones sobre las poblaciones en estudio pues, dada una determinada distribución espacial de los animales, el objetivo del muestreo es obtener un estimador insesgado del número total por medio de factores inducidos por el diseño muestral, como por ejemplo la aleatoriedad de la selección de los sitios de muestreo. Mientras las características (parámetros) poblacionales permanecen fijas, sus estimadores contienen distintos grados de incertidumbre, los que dependen tanto de las

estrategias (sistemas de aleatorización) como de los tamaños muestrales y de la variabilidad propia de la población.

Para optimizar los procesos muestrales, Folmer & Pennington (2000) indican que, aunque el muestreo adaptativo bietápico fue usado en el pasado, este método de muestreo fue reemplazado definitivamente por un muestreo estratificado utilizando preferentemente un número reducido de estratos para optimizar el esfuerzo muestral, el que se concentró en las zonas de mayor abundancia. De la misma forma, Kingsley *et al.* (2004) definen el muestreo estratificado como la forma de muestreo estándar para este tipo de poblaciones. Considerando dentro de cada estrato un esquema de aleatoriedad espacial completa, que corresponde a la distribución uniforme asumida por nosotros para efectuar, dentro de cada estrato, un muestreo aleatorio simple.

3.6.3. Diseño muestral propuesto

Todo plan de muestreo requiere de la definición de tres elementos básicos, a saber: una *unidad muestral*, un *plan de aleatorización* y un *tamaño de muestra*, cuyos fundamentos se presenta a continuación

3.6.3.1. Unidad muestral

Sobre el área de abundancia del recurso camarón nailon se define una grilla de 1,0 mn * 1,0 mn de orientación N-S y E-W, al interior de las cuales se efectuará los lances y que se denominan *celdas básicas*. Se definirá como *unidad muestral* a una transecta de orientación longitudinal, definida sobre las celdas básicas ya definidas y de, en promedio, 4 mn de longitud. De acuerdo con la definición de unidad muestral antes entregada, las mediciones (lances) de esta transecta se realizaron, alternamente, en una de cada dos celdas básicas, hasta cubrir completamente la longitud de la transecta. Para efectos de estimación, las medidas de la unidad muestral, fueron entonces las de la transecta, lo que entregó como resultado final un promedio ponderado por la longitud de la transecta.

3.6.3.2. Estrategia de muestreo (Proceso de Aleatorización)

Las Bases Especiales del Proyecto FIP Nº 2008-17 indican que se debe intensificar el muestreo en las áreas de abundancia (focos) que se detecte. Una interpretación de estas Bases exigiría la aplicación de un método de muestreo adaptativo (Thompson 1992), el que es recomendado para poblaciones agregadas en clusters. Sin embargo, estudios anteriores del camarón nailon han mostrado que existe un gradiente latitudinal con diferencias de densidad claramente delimitadas. La distribución espacial del recurso, sumada a las diferencias en densidad permiten utilizar un diseño muestral diferente, intensificándose el muestreo en aquellas zonas reconocidamente de mayor abundancia. Se propone reemplazar la componente adaptativa de las estrategias de muestreo, como se ha venido haciendo hasta ahora, intensificando el muestreo en las áreas de mayor abundancia o densidad del recurso camarón nailon. Consecuentemente, se utilizó un diseño muestral estratificado, en el que los estratos son definidos por zonas de distinta abundancia de la II a VIII Regiones, considerando que debe realizarse una intensificación de los muestreos al interior de las zonas de mayor abundancia.

Dado el conocimiento relativamente exacto que se posee de la ubicación de las zonas de mayor abundancia (considerando principalmente los proyectos FIP Nº 2004-10 y FIP Nº 2006-11), el presente proyecto considera la estratificación de las zonas en función de la densidad (CPUE = CPUA), lo que permitió analizar separadamente cada una de las zonas así definidas, para luego integrar los resultados en un estimador global de la biomasa total. Se consideró una estrategia de muestreo con mayor intensidad de muestreo en las zonas de mayor abundancia y menor en las zonas de reconocida menor densidad, por lo que los tamaños muestrales por cada estrato se definieron proporcionalmente a los tamaños y a la densidad (CPUA) conocida.

Cada estrato estuvo conformado por un número fijo y conocido de celdas básicas, las que definen el tamaño N_h del estrato. Dado que la distribución de la especie es esencialmente latitudinal, sobre una estrecha banda que en promedio tiene 4 mn de ancho (con orientación longitudinal), el proceso de aleatorización al interior de cada estrato se realiza en sentido latitudinal a partir del límite norte de cada estrato, de acuerdo al siguiente procedimiento:

- si la distancia entre el límite norte y el límite sur del estrato h-ésimo es de Kh millas náuticas, éstas se numeraron ordenadamente y en forma creciente de norte a sur con números de 1 a Kh;
- si el tamaño muestral, asignado proporcionalmente al estrato h-ésimo es n_h , se generaron n_h números aleatorios entre 1 (para la milla náutica ubicada más al Norte en el Estrato) y K_h (para la milla náutica ubicada más al Sur en el Estrato), utilizando para ello los procedimientos de simulación Montecarlo habituales. Así, las unidades muestrales se seleccionaron de aquellos lugares en los que corresponda según la numeración previamente asignada. Este procedimiento permitió seleccionar en forma completamente aleatoria los lugares desde donde se seleccionaron las muestras;
- en cada ubicación seleccionada se realizó una transecta de orientación E-W, seleccionando como primera celda básica a muestrear la que se encontró más próxima a la línea de la costa y que correspondió a la zona de abundancia previamente seleccionada. A partir de esa primera celda se realizaron las transectas antes definidas (unidad muestral), hasta cubrir enteramente la zona de abundancia. Esta estrategia permitió muestrear completamente el área de abundancia en sentido longitudinal y definir, por tanto, los límites longitudinales de las zonas de abundancia.

3.6.3.3. Tamaño de la muestra

En todo estudio destinado a la estimación de biomasa los tamaños muestrales se deben calcular teniendo en consideración tres elementos esenciales, a saber:

Varianza de la población

El tamaño muestral varía en proporción directa a la varianza de la población. Este es un valor que es propio de ella por lo que en general no es modificable por el investigador. Es posible, sin embargo, minimizar los tamaños muestrales mediante estrategias de agrupación adecuadas, como es el caso del muestreo estratificado, con el que se muestrea desde subpoblaciones internamente más homogéneas y, por tanto, de menor varianza.

Nivel de confianza de la estimación

El tamaño de la muestra varía directamente también con el nivel de confianza, el que está relacionado directamente con los procesos muestrales y nos refiere directamente la certidumbre que se tiene sobre las mediciones realizadas. Regularmente se opta por un nivel de confianza del 95%.

• Nivel de error deseado para los estimadores

El tamaño muestral varía inversamente con el cuadrado del error aceptado para el estudio. El error está relacionado con la precisión de los instrumentos de medida y la precisión deseada por los investigadores. Por lo anterior, errores demasiado pequeños requieren de tamaños muestrales muy grandes para lograr los objetivos de precisión y confianza deseados.

No obstante lo anterior, en estudios como éste es frecuente que los tamaños muestrales estén determinados por factores externos a los tres antes mencionados, como son el tiempo para ejecutar los estudios y la cantidad de recursos financieros disponibles. Considerando tales restricciones, se anticipaba que el número total de lances a realizar debía ser cercano a 500, los que se distribuirían estratificadamente de acuerdo al siguiente esquema:

3.6.3.4. Definición de estratos, número de transectas y número de lances

El stock de camarón nailon se distribuye como una delgada franja que se extiende latitudinalmente entre la II y VIII Regiones. Sin embargo, la densidad a lo largo de esta franja no es uniforme. En la Fig. 1 se muestra la distribución latitudinal de las abundancias observadas y reportadas por el Proyecto FIP Nº 2004-10. Las zonas restantes se separaron en cinco estratos de acuerdo con lo exhibido en la Tabla 3, y que corresponden a las regiones geográficas delimitadas por los rangos latitudinales que se indican diferentes densidades medias.

Los tamaños muestrales fueron proporcionales a los tamaños de los estratos y a la densidad conocida del recurso en estudio. En una primera etapa dicha proporcionalidad se define sólo en función de la extensión latitudinal de los estratos, que se muestra en la columna 3 de la Tabla 3.

Para intensificar el muestreo en las áreas de mayor abundancia se considera la abundancia media obtenida en el proyecto FIP Nº 2004-10, que se muestra en la columna 4 de la misma Tabla. En ella se observa que los estratos 3 y 5 tienen densidades medias muy parecidas y 20% superior a la del estrato 2, en tanto que el estrato 4 presenta una densidad de aproximadamente el doble de estas dos. En base a tales resultados se propuso que el factor proporcionalidad a la intensidad de muestreo, debido a la densidad media del recurso en el estrato, sea igual a:

- 1.0 para el estrato 2,
- 1.2 para los estratos 3 y 5, y
- 2.4 para el estrato 4.

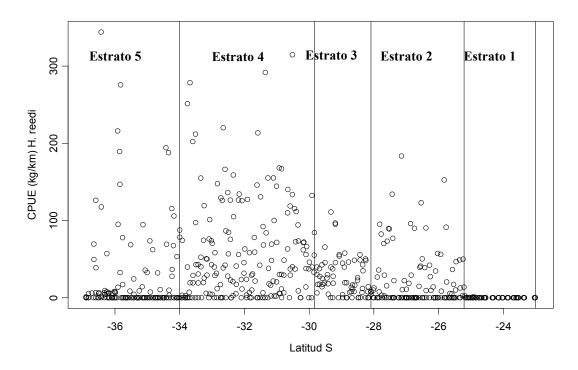


Fig. 1. Distribución latitudinal de los estratos a partir de los resultados del Proyecto FIP 2004-10.

Tabla 3. Definición de estratos y sus correspondientes tamaños muestrales indicados como número de transectas. La tercera columna corresponde a la distancia entre el límite norte y el límite sur del estrato, medido en minutos. La tercera columna corresponde a la longitud del estrato, y la Columna 4 corresponde las densidades medias obtenidas del proyecto FIP Nº 2004-10, utilizadas en el presente proyecto para los coeficientes de proporcionalidad con aquella densidad.

Estrato	Rango Latitudinal (°S)	Extensión Latitudinal (min)	Densidad media	Número de transectas (n _h)	Número de lances esperado
1	22°06'-25°12'	186	0,06	11	44
2	25°13'-28°05'	172	20,82	17	68
3	28°06'-29°49'	103	25,75	12	48
4	29°50'-33°59'	249	54,88	60	240
5	34°00'-37°00'	180	24,91	22	88
Total		890		122	488

El estrato 1 en tanto tiene una densidad considerablemente más baja que los otros cuatro estratos, por lo que se propone un factor de intensidad de 0,5. Esta intensidad mínima se justifica porque ello da, en promedio, una transecta cada 20 mn de latitud, aprox.; de acuerdo con estos criterios, en la Tabla 3 se muestra los resultados del número de transectas y lances propuestos para el presente proyecto. Para determinar el número de lances se estimó que, en promedio, se realizará 4 lances (=estaciones) por transecta.

Estos resultados permiten definir extensiones latitudinales del stock de camarón nailon que tienen densidades relativamente homogéneas y que sirvieron para definir las dimensiones de los estratos. No se realizó transectas entre adelgazamientos o estrangulamientos de la distribución del stock de camarón nailon relacionados con accidentes topográficos tales como puntas y bahías.

Esta estrategia permite optimizar el esfuerzo de muestreo al concentrarlo en aquellas zonas en las que comparativamente se obtenga resultados diferentes a los de evaluaciones anteriores, logrando, al mismo tiempo, tres objetivos, a saber:

- ajustar estadísticamente el número total de lances;
- distribuir de mejor forma el número total de lances por estrato en función del tamaño de cada estrato y de su varianza; y

• mejorar estadísticamente las estimaciones de la biomasa promedio y la varianza asociada, por caladero.

En el proyecto se efectuaron lances de 15 minutos de arrastre efectivo, ya que ésta es ahora la tendencia a nivel mundial (Gerard Conan, *com. pers.*, 2003), tal como se aplicó en los proyectos FIP N° 2003-03, FIP N° 2004-11, FIP N° 2005-09, FIP N° 2006-04, FIP N° 2007-19 para la evaluación de la biomasa de los recursos langostino colorado y langostino amarillo de la II a VIII Regiones. Por lo tanto, lo que se hace ahora es abordar con aquella experiencia la evaluación del recurso camarón nailon. Las razones principales son:

- en geoestadística tradicional cada muestra corresponde a una medida puntual en el mapa. Un lance largo funciona como un computador obteniendo promedios al metro cuadrado a lo largo del lance, entonces borra parte de la estructura espacial. En geoestadística este efecto se denomina "regularización" y resulta en variogramas deformados. Es difícil corregir los datos pues, en el caso de lances de arrastre, el promedio se obtiene según un recorrido largo y estrecho, con rumbos a veces variables;
- a un lance largo le corresponden normalmente capturas importantes. Pero, es muy difícil muestrear dentro de las capturas de un lance. La distribución de las especies y de las tallas dentro del copo no es nada de aleatoria. Por el contrario, en muchas ocasiones se detecta estratificación de la pesca en el copo. Luego, es preferible tener capturas pequeñas y contar y/o medir todos los individuos capturados. Luego, el hecho de muestrear dentro de un copo se introduce mayor variabilidad, obteniéndose mayor sesgo y falta de precisión en relación a la dispersión espacial natural del recurso en el piso marino;
- antiguamente, los métodos de navegación eran muy poco precisos, por lo que se utilizaba métodos de cálculo de biomasa no georreferenciados. Los lances largos permitían borrar un poco de variabilidad. Actualmente, por el contrario, la meta es utilizar el conocimiento de la variabilidad espacial para mejorar las estimaciones.

Sobre el particular, los lances cortos (15 minutos) permiten un mejor conocimiento de esta variabilidad;

- las características de pesca de la red van siendo modificadas conforme transcurre el lance y tiende a llenarse el copo. Esto significa que el agua no entra a la red ni filtra bien en la red cuando está llena, por lo que las especies en parte se escapan en vez de ser retenidas por las mallas. Esto trae como consecuencia obtener capturas que no son proporcionales al largo del lance. Por el contrario, los lances cortos limitan la incidencia de este efecto;
- para proceder con lances cortos, por todas las razones expuestas arriba, la condición es que la distancia recorrida por la red <u>debe</u> que ser medida con la más alta precisión posible. Por lo tanto, se requiere determinar exactamente cuándo la red llega al fondo en el calado y cuándo se inicia el levantamiento de la red desde el fondo en el virado. En nuestro caso, los registros son efectuados electrónicamente.

3.6.4. Aplicaciones SIG para el manejo y tratamiento de la información

3.6.4.1. Presentación

En el mundo actual, la buena gestión de los recursos es cada vez más función de la calidad de la información que se dispone y genera, y de la capacidad para su manejo. Así, la capacidad de manejo de información junto a conceptos claros de gestión permiten identificar bien fortalezas y debilidades para realizar un diseño superior de programas de acción, y una planificación eficiente para alcanzar objetivos de desarrollo de largo plazo (FAO, 1996).

Las herramientas de manejo de información al nivel de computadores de escritorio tienen hoy ya una capacidad tal que se puede organizar un volumen enorme de datos. En el tema de recursos pesqueros, estos sistemas permiten transformar los datos en información de gran valor práctico, a través de la representación de su distribución en el territorio de un modo gráfico y asociarlos a puntos o determinadas características mapa digital de la zona de evaluación o atributos de los recursos estudiados. Esta herramienta se denomina Sistema de Información Geográfica (SIG) y se

está usando en una variedad creciente de aplicaciones, en todo tipo de campos de las ciencias naturales.

Los Sistemas de Información Geográfica permiten visualizar un fondo cartográfico constituido por capas de información, las que se despliegan una sobre otra a voluntad. Así, se pueden exhibir -separada o conjuntamente- líneas de costa, veriles de profundidad, hitos submarinos relevantes (montañas o abismos submarinos, volcanes sumergidos, etc.), y lo que resulta relevante para este proyecto, la distribución espacial de los lances de pesca, límites de la distribución del recurso objetivo y focos de abundancia. Además, para cada elemento identificado en la representación digital, se puede asociar en la pantalla una tabla con todas las propiedades que se hayan ingresado al sistema, que correspondan a ese elemento (Fig. 2).

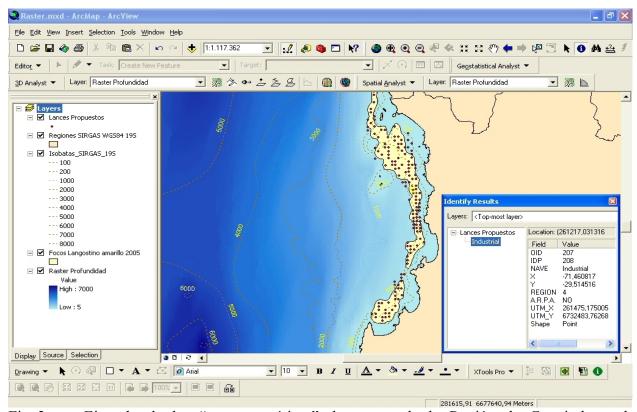


Fig. 2. Ejemplo de las "capas temáticas" de parte de la Región de Coquimbo y la información desplegada en forma paralela proporcionada por el SIG.

Las capacidades anteriores permiten, además, realizar análisis y simulaciones que son una ayuda muy valiosa para la asignación eficaz de recursos. Cabe destacar que las posibilidades de análisis

espacial y de representación sobre la pantalla quedan definidas, no por la capacidad del equipamiento o por el software sino por la cantidad y calidad de información que dispone el sistema. La información se prepara sobre planillas de cálculo, que se pueden ir integrando a las bases de datos de modo de mantener la información mejor actualizada y completa posible (FAO, 1996).

3.6.4.2. Georreferenciación de los lances de pesca

Para elaborar la cartografía se trabajó con un software SIG *ad hoc* para los propósitos del proyecto, que permite trabajar con información gráfica y alfanumérica. Primero se prepara el fondo cartográfico (mapa base) consistente en el mapa electrónico de la zona de estudio (Cartas Náuticas electrónicas 1000, 2000 y 3000 del Servicio Hidrográfico y Oceanográfico de la Armada de Chile, SHOA), georreferenciado en coordenadas UTM y geográficas en el datum WGS84 (World Geodetic System 1984). La elección del datum se debe a que este es un estándar mundialmente aceptado en los SIG y está ampliamente difundido en equipos comerciales (geoposicionadores) utilizados por las embarcaciones pesqueras de la Región y que participaron en los cruceros de evaluación de la abundancia del recurso objetivo.

Para mejorar la precisión de la ubicación de los lances de pesca y reducir las fuentes de error de observación, todos los posicionadores satelitales fueron configurados y calibrados con el mismo datum. Adicionalmente, para la localización de los lances de pesca y, posteriormente, los focos de abundancia del recurso objetivo, se dispuso del modelo digital de terreno (DEM) creado en la Universidad Católica del Norte, a partir de una base de puntos georreferenciados con valores batimétricos y que ha sido utilizado en los proyectos FIP 2003-03, FIP 2004-11, FIP 2005-09 y FIP 2006-04.

3.6.4.3. Metodología de implementación de bases de datos

Se diseñó una base de datos relacional que tuvo incluida la componente geográfica (ubicación) para vincular las diferentes variables levantadas en terreno y que sea compatible con programa de tratamiento de datos geoestadísticos y/o planillas de datos.

3.6.4.4. Procesamiento y tratamiento de la información

Se rescató del programa SIG las diferentes bases de datos georreferenciados, las que fueron tratadas en unidades UTM. Posteriormente, cuando se construyan las cartas temáticas con la distribución de los recursos y sus focos de abundancia, éstas serán convertidas en unidades geográficas.

3.7. Objetivo Específico 1

Determinar la distribución espacial del recurso, en el área de estudio.

3.7.1. Distribución espacial de la densidad de camarón nailon

El análisis de la distribución espacial del recurso camarón nailon se entiende acá en un sentido amplio. La técnica de análisis más apropiada para este efecto es la geoestadística (Petitgas, 1993; Rivoirard *et al.*, 2000), la que ha venido usándose en Chile para estudiar la distribución espacial de recursos de crustáceos desde 1996 y ya constituye una herramienta estándar (Roa & Tapia, 1998; Acuña & Arancibia, 2001; Páramo & Roa, 2003; Acuña *et al.*, 2003; Acuña *et al.*, 2005a, b). Una propiedad importante de este método de análisis es que supone que la variable medida localmente (densidad poblacional o captura por unidad de área = CPUA) es la realización de una variable aleatoria y, por lo tanto, se puede dar cuenta rigurosamente del error en la determinación de la variable localmente.

Para esto se define que el parámetro *nugget* del modelo de variograma está compuesto de la suma de dos efectos independientes: el error de observación debido a la variabilidad del APA y la micro-varianza debida a covarianzas espaciales a distancias menores que la menor distancia entre las muestras. Por esto es que el término de error en la ecuación de la densidad local total, que es debido a la APA, será tomado en cuenta en el análisis de la distribución espacial mediante geoestadística. El análisis geoestadístico, cuando se aplica con todas las especificaciones correctas y cuando se cuenta con una estimación independiente del error de observación debido a

la variabilidad de la APA dentro de cada lance, cumple con el requerimiento de las Bases Especiales de incluir el efecto de la variabilidad de la APA. Esto será así tanto en el análisis de la distribución espacial (Obj. Espec. 1) como en la estimación de biomasa (Obj. Espec. 2).

Se supuso la existencia de estacionaridad de segundo orden de la distribución espacial de la densidad poblacional de camarón nailon, es decir, que la media del proceso aleatorio bajo estudio es constante en el área de prospección y la covarianza entre dos puntos de muestreo depende sólo de sus distancias relativas (Isaaks & Srivastava, 1989). Este no es un requerimiento muy fuerte pues en la etapa de interpolación por kriging sólo se necesita la ausencia de una tendencia en la vecindad de los puntos observados. La variante teórica a utilizar es la geoestadística intrínseca, que se basa en un modelo de covarianza espacial. En este caso en particular, ese modelo corresponde al variograma (Journel & Huijbregts 1978), definido como la esperanza de la variable aleatoria $(Z(x)+Z(x+h))^2$, ó

$$2\gamma(x,h) = E[(Z(x)-Z(x+h))^2]$$

donde hemos omitido el índice de longitud (y) sólo para evitar notación excesiva.

Bajo la hipótesis intrínseca es posible estimar el variograma $2\gamma(h)$ a partir de los datos muestrales mediante el variograma experimental $2\gamma^*(h)$, que es la media aritmética de las diferencias al cuadrado entre dos mediciones experimentales, $Z(x_i) - Z(x_i + h)$, realizadas en dos puntos cualesquiera separados por el vector h, o sea:

$$\gamma^* = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} (z(x_i) - z(x_i + h))^2$$

donde N(h) es el número de pares de datos experimentales separados por el vector h.

Cuando existe efecto proporcional en los datos, es decir, cuando los cambios espaciales en la media local tienen asociado un cambio proporcional en su variabilidad, es conveniente utilizar variogramas experimentales relativos o estandarizados (Isaaks & Srivastava, 1989), de la forma

$$\gamma_{s} = \frac{\gamma^{*}(h)}{\sigma_{-h}\sigma_{+h}}$$

$$\sigma_{-h}^{2} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z^{2}(x_{i}) - m_{-h}^{2} \qquad m_{-h} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z(x_{i})$$

$$\sigma_{+h}^{2} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z^{2}(x_{i} + h) - m_{+h}^{2} \qquad m_{+h} = \frac{1}{N(h)} \sum_{i=1}^{N(h)} z(x_{i} + h)$$

donde la semivarianza en cada intervalo de distancia está ponderada por su variabilidad local.

En este estudio se utilizó variogramas estandarizados en todos los análisis pues esta opción no afecta la estimación del parámetro relevante del modelo y la hace mucho más eficiente. Se realizó este cálculo en dos direcciones (N-S y E-O) para investigar la existencia de diferencias direccionales en la estructura del proceso (*i.e.* anisotropía). Una vez calculados los variogramas experimentales se ajustaron modelos matemáticos que permiten relacionar la estructura observada con el supuesto proceso generador. Los tres modelos considerados para las densidades locales de camarón nailon fueron el esférico, el exponencial y el modelo Gaussiano, que están descritos según Cressie (1993) por,

$$\gamma(h;\theta) = \begin{cases} 0, & h = 0 \\ c_0 + c \left(\frac{3}{2} \left(\frac{\|h\|}{r}\right)\right) - \frac{1}{2} \left(\frac{\|h\|}{r}\right)^3, & 0 < \|h\| \le r \\ c_0 + c, & \|h\| \ge r \end{cases}$$

para el modelo esférico, y

$$\gamma(h;\theta) = \begin{cases} 0, & h = 0 \\ c_0 + c \left(1 - \exp\left(-\frac{\|h\|}{r}\right)\right), & h \neq 0 \end{cases}$$

para el modelo exponencial, y

$$\gamma(h;\theta) = \begin{cases} 0, & h = 0\\ c_0 + c \left[1 - \exp\left(-\frac{3\|h\|^2}{r^2} \right) \right], & h \neq 0 \end{cases}$$

para el modelo Gaussiano, donde c_0 es el efecto nugget, que caracteriza la variabilidad de microescala, c es el valor asintótico o sill del variograma menos el nugget, y r es el rango del variograma, más allá del cual los datos ya no presentan correlación.

En el caso de la ocurrencia de variogramas experimentales caóticos, producto de valores extremos, se usó la versión robusta propuesta por Cressie (1993):

$$\bar{\gamma}(h) = \frac{\frac{1}{2} \left\{ \frac{1}{N(h)} \sum_{i=1}^{N(h)} [Z(u_i) - Z(u_i + h)]^{\frac{1}{2}} \right\}^4}{\left(0,457 + \frac{494}{N(h)}\right)}$$

Los modelos fueron ajustados a los datos del variograma experimental mediante el método de mínimos cuadrados descrito por Cressie (1993), minimizando la sumatoria, esto es,

$$\sum_{i=1}^{H} N(h_i) \left(\frac{\hat{\gamma}(h_i)}{\gamma(h_i)} - 1 \right)^2$$

donde H es el número de intervalos en que se dividió la distancia entre puntos de muestreo.

Cada residuo al cuadrado se pondera según $N(h_i)$, que es el número de pares utilizado para calcular $\hat{\gamma}(h_i)$, y según el inverso de $\gamma(h_i)^2$. Este procedimiento tiene la ventaja de disminuir la ponderación de pares menos representados en la muestra y aumentar la de puntos cercanos al origen del variograma, que es donde posteriormente se hace la interpolación por kriging.

Previo a la estimación de la distribución espacial del recurso se realiza una validación cruzada de los parámetros del variograma teórico ajustado y de los parámetros a utilizar en la interpolación por *kriging* (*i.e.* parámetros del variograma teórico, radio de búsqueda, número máximo de pares a utilizar en la interpolación). El método de validación cruzada (Deutsch & Journel 1998) consiste en eliminar uno a uno los puntos en que se realizó el muestreo y utilizar el resto de los datos para estimar el valor de la variable en ese punto, utilizando el modelo de variograma y parámetros de *kriging* seleccionados.

De esta forma, se define el error de predicción en cada localidad muestreada como la diferencia entre el valor medido y el estimado a partir del resto de los datos (Isaaks & Srivastava 1989). El objetivo final de este procedimiento no paramétrico es obtener un criterio de decisión para seleccionar una combinación dada de parámetros del variograma teórico y del kriging. Se utilizó el promedio de los errores de estimación (i.e. sesgo) como criterio primario, dado que el objetivo central del análisis es obtener una estimación insesgada de la densidad media (Z^*) en la zona de prospección (Isaaks & Srivastava 1989).

Se utilizó kriging puntual ordinario como método de interpolación para obtener una estimación de la densidad media de camarón nailon sobre cada estrato y sobre cada foco de abundancia. Se consideró la distancia mínima promedio entre las estaciones de muestreo como la distancia internodal de la grilla de interpolación. Los parámetros del variograma teórico y del kriging seleccionados después de la validación cruzada, fueron utilizados para calcular las ponderaciones óptimas a ser asignadas a cada punto de muestreo y para estimar la densidad $Z(x_0, y_0)$ en las localidades (x_0, y_0) , utilizando

$$z^*(x_0, y_0) = \sum_{i=1}^n \omega_i z(x_i, y_i)$$

donde ω_i representa las ponderaciones asignadas a cada localidad muestreada.

La suma de estas ponderaciones es igual a 1 (*i.e.* constituyen una combinación lineal convexa), y por lo tanto la estimación es insesgada $(E[z^*(x_0)-z(x_0)]=0)$. Cada ponderación fue estimada de tal forma que el error de estimación $(\sigma_k^{*2}(x_0))$, llamado *varianza de kriging*, sea minimizada.

El mapeo geoestadístico se implementó en la última versión del programa SURFER, el SURFER 8, que incorpora la posibilidad de incluir los parámetros del variograma teórico ajustado para la interpolación por kriging al interior de los focos de abundancia identificados. Al respecto, en este mismo programa se puede incluir la grilla de interpolación previamente definida y construir los mapas de distribución de la densidad deseados.

En tal sentido, el mapeo de la densidad poblacional derivado del análisis geoestadístico (análisis estructural y kriging) permiten la construcción de mapas de contornos o de superficie donde se representa las variaciones espaciales de la variable aleatoria (Fig. 3).

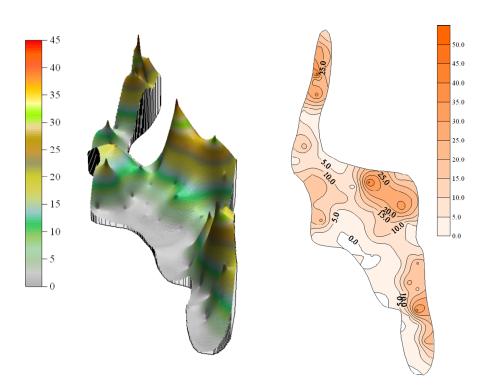


Fig. 3. Distribución espacial de la densidad de langostino amarillo en el Foco 14 identificado en el marco del Proyecto FIP 2004-11. Izquierda: mapa de superficie. Derecha: mapa de contornos.

3.7.2. Análisis espacio-temporal de la distribución espacial de camarón nailon

Para este análisis se determinará y analizará la variación espacial, para toda la unidad de pesquería (II a VIII Regiones) de la especie, como también separadamente para el sector norte (II a IV Regiones), y sur (V a VIII Regiones):

- (i) la posición y tamaño de los focos de abundancia de camarón nailon
- (ii) el centro de gravedad (CG) de la densidad poblacional (cpua, ton/Km²)

$$CG = \frac{\int x \cdot z(x) dx}{\int z(x) dx}$$

donde x es la localización en el espacio bidimensional de la variable regionalizada z(x).

(iii) inercia (I) del centro de gravedad

$$I = \frac{\int (x - CG)^2 \cdot z(x) dx}{\int z(x) dx}$$

el Índice de Gini (*IG*), que mide el grado de agregación del recurso en el área de estudio, calculado a partir de la aplicación de la Curva de Lorenz (*L*), la que se construye representando en el eje-*x* el porcentaje acumulado del área, mientras que en el eje-*y* se representa el porcentaje acumulado de la biomasa.

Si el camarón nailon está homogéneamente distribuido, la Curva de Lorenz corresponde a la función identidad, mientras que si los individuos están concentrados, la curva tiende a torcerse hacia abajo y a la derecha. El Índice de Gini (*IG*) se estima como dos veces el área delimitada por la función identidad y la Curva de Lorenz (Myers & Cadigan, 1995), esto es:

$$IG = 2 \cdot A \left| \int \{ (y = x) \cap [y_L = f(x_L)] \} \right|$$

3.8. Objetivo Específico 2

Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del recurso en el área de estudio, y por región y focos de abundancia, según corresponda.

La media muestral se reconoce como un estimador insesgado de la media poblacional independiente de la distribución subyacente desde donde es tomada la muestra aleatoria. Sin embargo, en los estudios de área barrida, la distribución de probabilidad de la densidad local es frecuentemente altamente sesgada, donde además la desviación estándar es mucho mayor que la media, lo que representa serios problemas para el uso de la media muestral como un estimador de la media poblacional (Grosslein, 1971; Pennington, 1996). En tal caso, la media muestral en si misma, tiene una distribución sesgada, convergiendo a una distribución normal simétrica sólo cuando el tamaño de muestra se hace infinitamente grande (asintóticamente normal).

Cuando se muestrea desde una distribución sesgada, como es el caso de los datos de arrastre de fondo de camarón nailon, con un tamaño de muestra pequeño a moderado (a veces limitado presupuestariamente), el estimador de densidad media poblacional es bastante sensible a la presencia de observaciones infrecuentemente altas, las que tienden a sobreestimar la media poblacional. La extensión de dicha sobreestimación depende, en gran parte, de cuan extrema es la observación (Syrjala, 2000). De la misma manera, el estimador de varianza de la media muestral será mucho mayor, indicando muy poca precisión del estimador de la media.

Con propósitos comparativos, la estimación de la biomasa vulnerable total (ton) de camarón nailon se calculará mediante cuatro métodos, a saber:

- (i) método geoestadístico intrínseco,
- (ii) método de la Distribución Delta lognormal,
- (iii) estimador de razón, y
- (iv) método de las microceldas de estimación geoestadística.

Al respecto, cabe hacer notar que la inclusión del método de la Distribución Delta y estimador de razón se debe a que ambos son todavía ampliamente utilizados para la estimación de la densidad media y abundancia de diversos recursos pesqueros nacionales, a pesar de las fuertes restricciones que tienen (caso de la Distribución Delta lognormal), así como a la poca robustez frente a valores extremos o valores atípicos. Adicionalmente, ambos métodos son considerados espacialmente no-explícitos, a diferencia del enfoque geoestadístico intrínseco y de microceldas de estimación. Adicionalmente, tanto en el caso del método de la Distribución Delta como del estimador de razón, el estimador de densidad media es fuertemente influenciado por la presencia de valores infrecuentemente grandes (valores atípicos), los que tienden a sobreestimar la densidad media e incrementar cuadráticamente la varianza del estimador (Smith, 1988; Myers & Pepin, 1990). Por el contrario, en ausencia de valores extremos, el estimador de la densidad poblacional promedio, tiende a ser subestimada dependiendo de la proporción de valores ceros (o muy pequeños) en la muestra, situación que es una constante en los estudios de área barrida.

3.8.1. Estimación de biomasa

3.8.1.1. Método geoestadístico intrínseco

Los métodos presentados para el objetivo específico 1, de distribución espacial de la densidad en peso total, de machos y de hembras, fueron utilizados en esta parte para estimar la biomasa mediante la integración a través de la grilla generada por kriging dentro de un polígono que define el área del stock en cada estrato y foco de abundancia. Dentro de cada uno de estos polígonos, la densidad media (z^*) se obtuvo promediando las estimaciones locales calculadas en cada uno de los m nodos de la grilla que cubre cada área de estudio. La biomasa vulnerable (B) y de cada sexo por estrato y foco de abundancia, y para el área de exclusión artesanal y el resto del área, todos estos cálculos por separado, fue estimada a través del producto entre la densidad media obtenida por kriging (z_{kg}^*) , el área total cubierta por el stock, S, y el recíproco del coeficiente de capturabilidad local promedio, cuya expresión es

$$\hat{B} = \frac{1}{\overline{q}} \, \hat{S} \cdot z_{kg}^*$$

Se ha evitado aquí introducir una enorme cantidad de subíndices para dar cuenta de las distintas particiones de la biomasa solicitadas en las Bases Especiales y las adicionales incluidas en esta propuesta, pero se debe entender que éstos se aplicaron a todas esas particiones. El área S no puede ser estimada estadísticamente utilizando la teoría intrínseca de la geoestadística pues esta teoría no permite 'efecto de borde', es decir, interacción entre la densidad y el hábitat (Petitgas y Lafont 1997). Sin embargo, es posible estimar S y su varianza de estimación transformando los datos de z(x, y) con la función indicadora para utilizar luego la teoría geoestadística transitiva (Petitgas y Lafont 1997). Este tema será tratado más adelante en este capítulo. Se considera por ahora sólo la varianza del estimador de la media zonal, cuya forma es

$$z_{kg}^* = \frac{1}{m} \sum_{j=1}^{m} z^*(x_j, y_j) \approx \frac{1}{S} \int_{S} z(x, y) dx dy$$

La varianza debida sólo al hecho de observar una realización del proceso estocástico que se supone da origen a los datos se calcula utilizando la teoría intrínseca de la geoestadística (Petitgas y Lafont 1997). La varianza de estimación de z_{kg}^* corresponde al varianza del error, de la forma

$$\sigma_{kg}^2 = E[(z - z_{kg}^*)^2] = 2\bar{\gamma}_{\{z(\cdot)\}S} - \bar{\gamma}_{SS} - \bar{\gamma}_{\{z(\cdot)\}}$$

donde el operador esperanza se desarrolla en términos del variograma en lugar de la covarianza como se hace usualmente.

El primer término al lado derecho de la precedente es el variograma promedio para todas las distancias entre cada uno de los puntos observados (elementos del conjunto $\{z(\cdot)\}$) y todos los puntos del área S. El segundo término es el variograma promedio para todas las distancias entre los puntos en el área S (observados o no). El tercer término es el variograma promedio para todas las distancias entre todos los puntos observados (todos los elementos del conjunto $\{z(\cdot)\}$).

Este método de estimación de la varianza de la densidad media por geoestadística intrínseca sólo depende de los datos indirectamente, a través de la estimación del modelo de variograma del

Objetivo Específico 1. Entonces, el modelo de variograma para cada sexo, estrato, foco de abundancia y área de exclusión artesanal y el resto del área, y la disposición de las muestras, fue ingresada en el algoritmo EVA2 de Petitgas y Lafont (1997). Este programa ha sido especialmente diseñado para determinar la varianza de la estimación de biomasa, y sigue la metodología de discretización del área propuesta por Journel y Huijbregts (1978).

EVA2 considera el caso de diversos tipos de diseño de muestreo, a saber: (1) transectas paralelas regularmente espaciadas continuamente muestreadas (registros acústicos), (2) Transectas paralelas regularmente espaciadas muestreadas por estaciones regularmente espaciadas, (3) grilla regular con un tamaño de malla cuadrado (muestreo sistemático), (4) transectas en zig-zag continuamente muestreadas cubriendo el área independientemente de la distribución espacial de los valores de densidad, (5) estaciones dispersas no aleatorias ni regularmente espaciadas (muestreo aleatorio), y (6) diseños donde la densidad de muestreo varía en el espacio (muestreo adaptativo).

3.8.1.2. Método de la Distribución Delta-lognormal

Considerando que la captura por unidad de esfuerzo (CPUE = CPUA) en las faenas de pesca comerciales y científicas orientadas a crustáceos como camarón nailon y langostinos (colorado y amarillo) se distribuye en forma asimétrica lognormal, entonces, para cuantificar la biomasa de este recurso, ignorando criterios espaciales, es posible utilizar un estimador de densidad media derivado del modelo de la Distribución Delta, cuya forma simplemente es

$$B_0(f) = A_{ln}(f) \cdot Area(f)$$

donde $B_0(f)$ es la biomasa (toneladas) en el foco (f), $A_{ln}(f)$ es el estimador Finney-Sichel (Finney, 1941) de la media log-normal (ton/Km²) en el foco (f), Area(f) es el área total (Km²) de distribución del recurso en el foco (f).

De acuerdo a McConnaughey y Conquest (1993), el estimador Finney-Sichel (FS), equivale al estimador de máxima verosimilitud de los datos log-normales, y está dado por la siguiente expresión:

$$FS = \frac{m}{n} \cdot e^{\overline{CPUE_{ln}}} \cdot \phi_m(\sigma)$$

siendo m el número de lances con captura del recurso objetivo, n el número de lances totales efectuados, $CPUE_{ln}$ la densidad media transformada a logaritmo natural, $\phi_m(\sigma)$ una serie infinita en función de la varianza (s^2) de las CPUE transformadas a logaritmo natural.

La serie $\phi_m(\sigma)$ está definida por la siguiente expresión:

$$\phi_m(\sigma) = 1 + (m-1)\frac{\sigma}{m} + \frac{(m-1)^3 \sigma^2}{2! m^2 (m+1)} + \frac{(m-1)^5 \sigma^3}{3! m^3 (m+1) (m+3)} + \dots$$

donde el parámetro σ , corresponde a la mitad de la varianza de las CPUE transformadas a logaritmo natural (s²/2).

Los límites de confianza del estimado de biomasa media explotable, efectuados con las CPUE transformadas a logaritmo natural, no son simétricos y quedan expresados en función del estadístico tabulado H_{α} (obtenido de las tablas de Land, 1975), que establece valores distintos considerando la asimetría de la distribución analizada, luego el límite superior (*LS*) y el inferior (*LI*) son:

$$LI = B_0 - \left(Area(f) * e^{\left(\frac{\overline{CPUE_{\ln}} + \frac{s^2}{2} + H_\alpha * \frac{s}{\sqrt{m-1}} \right)} \right)$$

$$LS = B_0 + \left(Area(f) * e^{\left(\overline{CPUE_{\ln}} + \frac{s^2}{2} + H_{1-\alpha} * \frac{s}{\sqrt{m-1}}\right)}\right)$$

donde H_{α} es un estadístico tabulado en función de α , m-1 y s (Land, 1975).

3.8.1.3. Estimador de razón

No obstante, ser el estimador de razón considerado poco robusto como estimador de la densidad media, dado que es altamente influenciado por los valores muestrales (especialmente cuando existen valores atípicos), se ha optado por considerarlo aquí como un referente de comparación, debido a que es frecuentemente utilizado por otros grupos de investigación nacionales.

El estimador de razón, como estimador de la densidad media, corresponde a la razón entre la captura obtenida en una unidad espacial cualquiera y el esfuerzo de pesca (área barrida, AB) correspondiente a esa unidad, lo que se representa como:

$$\overline{CPUA}_{k} = \frac{\sum_{i=1}^{n} C_{i}}{\sum_{i=1}^{n} AB_{i}}$$

donde \overline{CPUA}_k es la densidad media (captura por unidad de área, ton/Km²) en la k-ésima unidad espacial (foco de abundancia), C_i es la captura (tons) en todos los i lances dentro de la unidad espacial evaluada y AB_i es la unidad de esfuerzo de pesca aplicada.

La varianza del estimador de razón, dado que es no paramétrico, se calculó (para cada una de las unidades espaciales = focos de abundancia) mediante remuestreo aleatorio con reemplazo. Luego, los intervalos de confianza fueron construidos mediante el método del percentil corregido (Efron, 1982).

El estimador de biomasa para el estimador de razón está dado por el producto entre el estimador de densidad media (\overline{CPUA}_k) del foco de abundancia k y su respectiva área (A_k , Km²), esto es,

$$B_0^k = A_k \cdot \overline{CPUA_k}$$

Luego, la varianza de la biomasa se estima como la varianza del producto de una variable y una constante mediante la siguiente expresión:

$$Var(B_0^k) = Var(A_k \cdot \overline{CPUA_k})$$

entonces,

$$Var(B_0^k) = A_k^2 \cdot Var(\overline{CPUA_k})$$

3.8.1.4. Microceldas de estimación geoestadística

Este método se propone como una alternativa de estimación de biomasa al interior de los focos de abundancia previamente definidos. Este enfoque se deriva del análisis geoestadístico, particularmente del kriging, y consiste de tres pasos fundamentales:

- 1. Definición de una grilla de interpolación con tamaño de malla regular de dimensiones conocidas de tamaño menor a la distancia promedio entre estaciones de muestreo, por ejemplo $1 \times 1 \text{ Km}^2$, al interior de los focos de abundancia. Luego, para el nodo de la grilla se asume el punto medio (x_0, y_0) de un polígono regular de tamaño (superficie) también conocido como celda de estimación.
- 2. Aprovechando las propiedades del kriging (y sus parámetros), junto con los parámetros del variograma teórico calculados después de la validación cruzada, se estima la densidad local $(Z(x_0, y_0))$ en los puntos medios de las celdas antes definidas según la expresión:

$$z^*(x_0, y_0) = \sum_{i=1}^n \omega_i z(x_i, y_i)$$

donde ω_i representa las ponderaciones (del algoritmo de kriging) asignadas a cada localidad muestreada.

El algoritmo de estimación de la densidad local por kriging implementado en el módulo Spatial Stat del paquete estadístico S-Plus 2000 permite la estimación del error de estimación del estimador de densidad local en el punto (x_0, y_0) . Luego, si se asume que el

error de estimación es equivalente al error estándar del estimador se cuenta así con $n(x_0, y_0)$ valores de densidad media, su error estándar e intervalos de confianza correspondiente.

3. Se calcula la biomasa al interior de cada celda de estimación como el producto entre el área de la celda y su densidad local:

$$B_{(x_0,y_0)} = A_{(x_0,y_0)} \cdot z^*(x_0,y_0)$$

con intervalos de confianza equivalentes a:

$$LI(B_{(x_0,y_0)}) = A_{(x_0,y_0)} \cdot LI(z^*(x_0,y_0))$$

$$LS(B_{(x_0,y_0)}) = A_{(x_0,y_0)} \cdot LS(z^*(x_0,y_0))$$

Por lo tanto, el estimador de biomasa e intervalos de confianza corresponderán a la sumatoria de las $n(x_0, y_0)$ celdas de estimación calculadas para cada foco de abundancia k, esto es:

$$B_{k} = \sum_{i=1}^{n(x_{0}, y_{0})} B_{(x_{0}, y_{0})_{i}}^{k}$$

$$LI(B_{k}) = \sum_{i=1}^{n(x_{0}, y_{0})} LI(B_{(x_{0}, y_{0})_{i}}^{k})$$

$$LS(B_{k}) = \sum_{i=1}^{n(x_{0}, y_{0})} LS(B_{(x_{0}, y_{0})_{i}}^{k})$$

3.8.1.5. Estimación de la Biomasa mediante Muestreo Estratificado.

Supuestos del modelo.

Asumiendo que al interior de cada estrato la distribución de la biomasa es relativamente homogénea, es posible cumplir con los supuestos asociados a la estrategia de muestreo sistemático que requiere que el recurso se distribuya uniformemente en toda el área (Cochran, 1977; Thompson, 1992). Con esta estrategia de muestreo se consigue tres objetivos, a saber:

- Primero, aumentar la intensidad de muestreo en las zonas de mayor abundancia, como se ha establecido en las Bases Especiales del proyecto.
- Segundo, se reduce la varianza del estimador al considerar separadamente estratos internamente homogéneos, ello, según lo establecido por la teoría de muestreo tiende a reducir la varianza y los tamaños muestrales mínimos necesarios para lograr a misma precisión y confianza de los estimadores.
- Tercero, el muestreo independiente dentro de los focos o zonas de abundancia permite obtener una estimación estadística objetiva del área del stock en cada área por separado.

Esta estrategia de muestreo permite estimar con relativa facilidad la abundancia promedio \bar{y}_{ST} y su varianza respectiva $Var(\bar{y}_{ST})$, mediante las expresiones

Sea L el número de estratos considerados, luego N_h y n_h , h= 1, 2, ,...., L, corresponden al tamaño del estrato y de la muestra seleccionada desde es estrato h respectivo, entonces los estimadores de la media y varianzas poblacionales son, respectivamente

$$\bar{y}_{ST} = \sum_{h=1}^{L} W_h \cdot \bar{y}_h$$

$$Var(\bar{y}_{ST}) = \left(\sum_{h=1}^{L} W_h^2\right) \cdot Var(\bar{y}_h),$$

cuyo estimador muestral es de la forma

$$S^{2}(\bar{y}_{ST}) = \sum_{h=1}^{L} W_{h}^{2} \frac{S_{h}^{2}}{n_{h}} \frac{N_{h} - n_{h}}{N_{h}}$$

donde \bar{y}_h es el promedio muestral y S_h^2 la varianza muestral de cada estrato h, con h = 1, 2, ..., L y W_h corresponde a un coeficiente de ponderación por estrato y que puede estar determinado, por ejemplo, por el tamaño de cada estrato.

De esta misma forma, considerando $N = \sum_{h=1}^{L} N_h$, pueden obtenerse los estimadores para los totales poblacionales

$$\hat{Y}_{ST} = N \cdot \bar{y}_{ST}$$

con varianza estimada por

$$S^{2}(\hat{Y}_{ST}) = \sum_{h=1}^{L} N_{h} (N_{h} - n_{h}) \frac{S_{h}^{2}}{n_{h}}$$

A partir de estas expresiones es posible obtener los límites de confianza para el total poblacional mediante la expresión

$$N \cdot \overline{y}_{ST} \pm t_{1-\alpha/2} \sqrt{\sum_{h=1}^{L} N_h (N_h - n_h) \frac{S_h^2}{n_h}}$$

En que $t_{1-\alpha/2}$ corresponde al percentil (1-a-2)(/)*100% de la distribución t-Student. Se usa para estos efectos una distribución studentizada debido a que no se conoce el valor verdadero de la varianza poblacional. Cuando los tamaños muestrales son suficientemente grandes, esta distribución puede aproximarse, sin embargo, a la distribución normal, utilizando en dicho caso:

$$N \cdot \overline{y}_{ST} \pm z_{1-\alpha/2} \sqrt{\sum_{h=1}^{L} N_h (N_h - n_h) \frac{S_h^2}{n_h}}$$

Los criterios de ponderación de los estratos obedecen, en este caso, a una asignación de ponderaciones proporcionales al tamaño de cada estrato (medido en km²).

El error asociado en la estimación depende de tres factores: (*i*) el tamaño de la muestra, (*ii*) el nivel de confianza (se utiliza el 95%) y (*iii*) la varianza (hasta el momento desconocida). En consecuencia, el error asociado a la estimación de biomasa será determinado a partir del intervalo de confianza una vez conocidas las varianzas muestrales.

En resumen, en estudios de evaluación directa de la biomasa de recursos bentónicos, como el camarón nailon, la estrategia tradicional ha sido aplicar, a la luz de los resultados obtenidos, esquemas de muestreo estadísticamente inadecuados para las características distribucionales de la población en toda el área, posiblemente y, entre otras razones, por condicionamientos impuestos por el tipo de análisis a realizar (los que requieren de un cierto patrón para la distribución espacial de las muestras). En términos generales, el tipo de muestreo propuesto ahora implica mayor eficiencia en el uso del esfuerzo de muestreo, mayor precisión en la determinación de los focos de abundancia y la obtención de estimadores más eficientes (respecto del error cuadrático medio).

3.8.2. Estimación del área de los focos de abundancia

3.8.2.1. Geoestadística transitiva

Uno de las mayores debilidades del método del área barrida se refiere a la forma de calcular o estimar el área del stock, o de cualquier partición del mismo. Cualquier método de estimación basado en la estadística clásica del muestreo de poblaciones finitas no está permitido pues esa teoría supone que el número total de unidades de muestreo en la población es conocido antes de la estimación. Consecuentemente, cualquier método de remuestreo exhibe la misma deficiencia, pues los datos mismos a ser re-muestreados no contienen información independiente acerca del número de éstos. Incluso, la teoría intrínseca de la geoestadística no permite una estimación del área porque en esa teoría no está definida la covarianza entre el hábitat y el proceso estocástico.

Todos los métodos que pudieran diseñarse dentro de esas tres teorías son métodos *ad-hoc*, es decir, no están apoyados por la teoría de estimación. Lo máximo que pudiera plantearse bajo cualquiera de las tres teorías mencionadas es un estudio de sensibilidad, haciendo variar el área dado distintos criterios de delimitación, y observando los efectos sobre la estimación de biomasa, pero ese análisis presenta un problema de circularidad en el argumento, pues dado que la relación entre la densidad promedio y el área es perfectamente lineal en la estimación de biomasa, los resultados del análisis de sensibilidad serán conocidos perfectamente antes de hacer el análisis de sensibilidad. Por ejemplo, al hacer variar el área un 20% hacia abajo o un 20% hacia arriba, la biomasa varía determinísticamente un 20% hacia abajo y un 20% hacia arriba, respectivamente.

Afortunadamente, existe una rama de la geoestadística que permite cubrir este problema desde un punto de vista consistente con la teoría de estimación estadística, la geoestadística transitiva. Esta teoría fue desarrollada por el fundador de la teoría geoestadística Matheron (1971), pero no ha sido ampliamente usada en pesquerías a pesar del ya consolidado uso de la geoestadística para el análisis de datos espaciales de densidad de recursos pesqueros. Aparte de un trabajo de Petitgas (1993) en una dimensión, la literatura principal pesquera registra sólo dos estudios muy recientes, a saber, Bez y Rivoirard (2001) y Bez (2002). Se propone la introducción de estas técnicas específicamente para la estimación del área de las distintas particiones del stock a ser evaluadas mediante transectas espaciadas regularmente.

Como la estimación de la densidad media ya está cubierta por el uso de la geoestadística intrínseca y por el método Delta-lognormal, sólo interesa estimar el área *S*. Convenientemente, entonces, se realiza la transformación de los datos de densidad con la función indicadora

$$I(x,y) = \begin{cases} 0, & si & z(x,y) = 0 \\ 1 & si & z(x,y) > 0 \end{cases}$$

lo que significa que la grilla regular dentro de cada partición espacial del stock se convertirá en una grilla de 1s y 0s. Esta técnica permite que la doble integral sobre la latitud y la longitud, multiplicada por el área de influencia de cada unidad muestral, sea inmediatamente igual al área de la partición espacial del stock que se está considerando. Sea S el área total que cubre la distribución espacial de la función indicadora I(x, y), entonces la cantidad a ser estimada es

$$S = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} I(x, y) dy$$

y su estimador geoestadístico transitivo es

$$\hat{S}(x_0, y_0) = S_x S_y \sum_{k_1 = -\infty}^{+\infty} \sum_{k_2 = -\infty}^{+\infty} I(x_0 + k_1 S_x, y_0 + k_2 S_y)$$

donde x_0 , y_0 son los puntos de partida de la grilla, que deben ser elegidos aleatoriamente para garantizar insesgamiento respecto del diseño (que se cumple aquí porque la primera transecta se eligió al azar dentro de cada estrato), s_x y s_y son las áreas latitudinales y longitudinales cubiertas por cada unidad de muestreo (cada estación de muestreo dentro de cada transecta), iguales para todas las unidades (garantizado por el diseño de espaciamiento regular), y donde las sumas van hacia el infinito porque se permite el efecto de borde y de hecho el borde mismo es estimado.

En esta teoría, la herramienta estructural conveniente no es el variograma de la teoría intrínseca, sino que el covariograma transitivo de la forma

$$g(h) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} I(x, y) I(x + u, y + v) dy$$

donde u y v son los lados de un triángulo tal que el vector de distancia cuadrático $h^2=u^2+v^2$. La varianza de estimación es equivalente a la varianza del estimador ya que este método es diseñobasado y luego la cantidad S no se supone que sea la realización de una variable aleatoria sino que se supone fija,

$$\sigma_S^2 = s_x s_y \sum_{k_1 = -\infty}^{+\infty} \sum_{k_2 = -\infty}^{+\infty} g(k_1 s_x, k_2 s_y) - \int_{-\infty}^{+\infty} g(h) dh$$

Esta metodología es una de las opciones del algoritmo EVA2 de Petitgas y Lafont (1997), utilizada en este proyecto.

3.8.2.2. Método alternativo de estimación del área de los focos de abundancia

Con el propósito de evaluar el impacto del área de los focos de abundancia en la estimación de biomasa de camarón nailon, y contrastar estos resultados con la estimación mediante geoestadística transitiva, se propone acá realizar una estimación alternativa del área de los focos de abundancia. Para este efecto se empleará el "Método de Interpolación de Vecinos Naturales".

El diagrama de Voronoi (1908) y su complemento, Delaunay tesselation ("cubrimiento de una superficie con baldosas"), son construcciones geométricas ampliamente usadas en el campo de la geometría computacional. En el caso de la estimación de polígonos de abundancia a partir de datos muestrales se considera el espacio Euclidiano bi-dimensional (\mathbf{R}^2); la teoría sin embargo, es aplicable en un marco general k-dimensional (Sukumar, 1997).

Considerando un conjunto distinto de puntos (nodos) $P = \{p_1, p_2, ..., p_N\}$ en \mathbb{R}^2 . El polígono de Voronoi o Thiessen de p_n es definido como

$$T_N = \left\{ x \in \mathbb{R}^2 : d(x, x_n) < d(x, x_m) \quad \forall \quad m \neq n \right\}$$

donde $d(x, \cdot)$ es la métrica Euclidiana. Cada polígono T_n es la intersección de varios espacios semiabiertos, cada uno siendo delimitado por el bisector perpendicular. En términos simples, el polígono T_n puede ser visto como el lugar más cercano a p_n que cualquier otro nodo. Generalizando, se observa que el diagrama de Voronoi para un conjunto de nodos divide el plano bidimensional en un conjunto de regiones. Los triángulos de Delaunay son construidos conectando los nodos cuyas celdas de Voronoi tienen límites comunes (Fig. 4). La triangulación de Delaunay y los diagramas de Voronoi son estructuras duales, cada una contiene la misma información, pero representada en diferente forma.

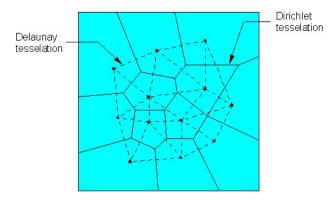


Fig. 4. Mosaicos de Delaunay y Dirichlet para un conjunto de datos espaciales. Si T_n y T_m tienen un límite común, p_n y p_m son considerados "vecinos". La noción de un conjunto de nodos adyacentes es generalizada por la definición de nodos "vecinos - naturales". Los vecinos naturales de cualquier nodo son aquellos de las celdas de Voronoi adyacentes, o equivalentemente, aquellos en que el nodo está conectado por los lados del triángulo de

Delaunay. La definición anterior se hace extensiva a la estimación de cualquier punto $X(x) \in R^2 X$. Incluyendo el punto muestral X en la triangulación de Delaunay, los vecinos naturales de X son el conjunto de nodos que están conectados a él. Se debe hacer notar que el número de vecinos naturales es una función de posición de X(x), y depende de la densidad nodal local (Fig. 5).

La interpolación por vecinos naturales usa una media ponderada de los datos puntuales de la vecindad para calcular un interpolante. Para definir el peso de un punto de la vecindad, Sibson (1981) introduce la idea de "coordenadas locales". Las coordenadas locales definen el peso o cantidad de influencia que cualquier punto muestral tendrá sobre el valor de la función calculada en un punto de interpolación. El peso es enteramente dependiente del área o volumen de influencia de los puntos que rodean al interpolante. El área o volumen de influencia es representado por los politopos de Thiesson o Voronoi (Owen, 1993).

La red de politopos de Thiesson para un conjunto de puntos muestrales es el mosaico Dirichlet ("Dirichlet tessellation") y complemento del mosaico Delaunay, como se muestra en la Figura 6. El mosaico Delaunay es formado por la triangulación de los puntos muestrales bajo el criterio que el vértice opuesto está contenido en el mosaico Dirichlet.

Las coordenadas locales del vecino natural son ilustradas en la Figura 5. Los puntos 1 a 10 son puntos maestrales donde el valor z es conocido y es un punto donde se quiere interpolar un valor z. La inserción temporal de P_n en el mosaico Delaunay causará el cambio del mosaico Direchlet resultando en nuevas áreas Thiesson para los polígonos en la vecindad de P_n . La línea segmentada muestra el mosaico Dirichlet antes de que P_n sea temporalmente insertado, y la línea continua muestra el mosaico Dirichlet después que P_n sea agregado. Sólo los puntos cuyos polígonos Thiesson han cambiado serán usados para calcular los interpolantes, que en el caso de la Figura 6, corresponden a los puntos 1, 4, 5, 6 y 9. La coordenada local $\lambda_m(n)$ para cada uno de estos puntos con respecto a P_n es definida como el área compartida por el polígono Thiesson definido por P_n y el polígono Thiesson definido por el respectivo dato antes de que P_n sea agregado.

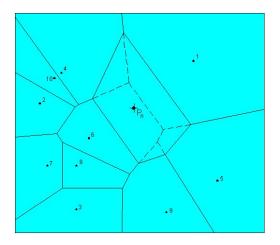


Fig. 5. Mosaico Dirichlet de un conjunto de datos espaciales antes y después de la inserción del punto P_n .

Es evidente que $\lambda_m(n)$ será un número entre cero y la unidad. Si P_n está en la misma localización que P_m (un punto muestral), entonces $\lambda_m(n)$ será la unidad. La coordenada local tiene también la propiedad que la suma de todas las coordenadas locales λ_m para cualquier interpolante P_n será 1.

$$\sum_{m=1}^{n} \lambda_m = 1, \qquad 0 \le \lambda_m \le 1$$

Los datos muestrales adyacentes involucrados en la interpolación de P_n son todos aquellos puntos que definen los triángulos en la triangulación de Delaunay que son adyacentes al punto P_n temporalmente insertado. Si se define $\kappa(n)$ como el área de Thiesson de P_n y $\kappa_m(n)$ como la diferencia en el área de Thiesson del punto muestral adyacente, P_m antes y después de que P_n sea insertado, entonces la coordenada local $\lambda_m(n)$ es definida como:

$$\lambda_m = \frac{\kappa_m(n)}{\kappa(n)}$$

Conociendo las coordenadas locales o las influencias de los puntos muestrales adyacentes a P_n , el valor de la función puede ser calculada sumando los valores de la función en los puntos muestrales de la vecindad ponderados por su respectiva coordenada local como sigue:

$$f_n = \sum_{m=1}^k \lambda_m(n) f_m$$

donde k es el número de "vecinos naturales" del interpolante P_n . Se pueden realizar refinamientos adicionales a la ecuación anterior con el propósito de incorporar gradientes, luego:

$$f_n = \sum_{m=1}^k B(\lambda_m(n)) [f_m + b_m^T (u_m - u_n)]$$

donde b_m es el gradiente estimado en P_m y u_m y u_n son las coordenadas de P_m y P_n , respectivamente. La función de combinación, B, es una función de la coordenada local λ_m .

Habiendo definido los vecinos naturales del interpolante, hay varios aspectos que deben ser resueltos en orden de implementar tal esquema, los que son divididos en las siguientes categorías:

- 1. Definición del mosaico Delaunay
- 2. Definición de los politopos de Thiesson y sus áreas
- 3. Estimación de gradientes.

Para definir la vecindad y coordenadas locales para cada punto muestral en un conjunto de datos, la interpolación del vecino natural requiere que los datos muestrales primero sean disgregados en una red de unidades básicas de área (UBA) que cumplen el criterio Delaunay. También se requiere que las UBAs definan un armazón convexo. El mosaico Delaunay de un conjunto de datos muestrales proporciona las bases para la definición del mosaico Dirichlet y el área resultante de influencia de cada punto muestral (Owen, 1993).

El algoritmo de disgregación requiere que un nuevo punto sea localizado con respecto a una de las UBAs derivadas del criterio de Delaunay (Lee & Schacter, 1980). La inserción de un nuevo punto puede ser interna (dentro de la red de puntos muestrales) o externa, aspecto que resulta de mayor interés en este caso, dado que dichos puntos pueden pasar a constituir uno de los vértices del polígono de estimación o distribución del recurso objetivo.

Debido a que la interpolación de vecino natural requiere que los límites de la red triangulada irregular sea un polígono convexo formado por todos los datos muestrales, cualquier punto insertado fuera de dicho polígono, debe formar una UBA con todos los puntos del polígono que son visibles al nuevo punto. Un borde o cara del polígono es definido como visible si, por ejemplo, un observador situado en la nueva localización (inserción) puede trazar una línea directa al borde o cara del polígono (Fig. 6a).

Matemáticamente, esto es definido determinando la distancia perpendicular desde el punto a la línea infinita o plano del borde del polígono o caras. Los nuevos triángulos son formados conectando la nueva inserción con cada borde visible. Lo anterior, sin embargo, no es suficiente para generar nuevos triángulos que mantengan el criterio Delaunay. Todos los bordes adyacentes a los bordes deben ser revisados para asegurarse que su circumcírculo no contiene la nueva inserción (Fig. 6b). Si se encuentra que un circumcírculo de un triangulo contiene al nuevo punto, este es borrado de polígono convexo y sus dos bordes opuestos son reemplazados (Fig. 6b) dando lugar aun nuevo polígono (Fig. 6c). Estos nuevos bordes son entonces revisados para ver que su triángulo adyacente no contenga la nueva inserción. Una vez que los bordes han sido compilados, los nuevos triángulos pueden ser generados, conectando el nuevo punto (inserción) con cada borde remanente del polígono de distribución (Fig. 6c). La Fig. 7 muestra la relación entre los triángulos de Delaunay y los polígonos de Voronoi.

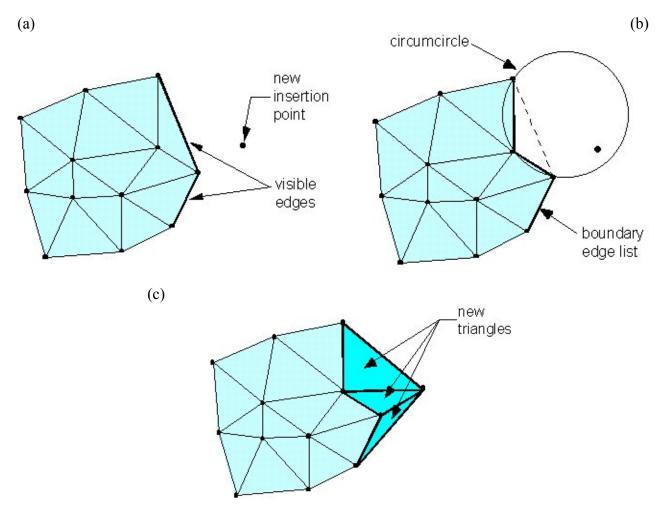


Fig. 6. Diagrama del mecanismo de inserción de un punto fuera del polígono convexo (a) y generación de un nuevo polígono de estimación (b, c).

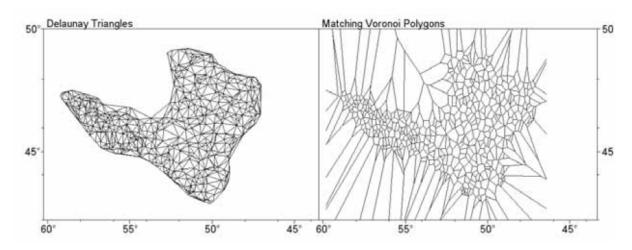


Fig. 7. Relación entre los Triángulos de Delaunay (izquierda) y los polígonos de Voronoi (derecha). Tomado de Kulka *et al.* (2005).

3.8.3. Relación longitud-peso

Unos de los aspectos básicos registrados en los estudios de la biología o biología - pesquera de cualquier especie son la longitud y peso de los individuos recolectados. Ambas variables permiten caracterizar la población estudiada, como es el caso de la estructura de tamaños (o peso), o determinar la relación longitud-peso particular. En este sentido, resulta muy frecuente observar en la literatura científica alcances respecto de la relación longitud-peso de las especies en estudio.

Algunos de los principales usos de la relación longitud-peso en la investigación pesquera son: (i) permitir la conversión de la longitud de un individuo a peso o viceversa; (ii) estimar el peso medio de los ejemplares de una clase de longitud dada (Beyer, 1987); (iii) convertir la ecuación de crecimiento en longitud en una de crecimiento en peso; (iv) predecir el peso a la edad, por ejemplo, en modelos de rendimiento por recluta; (v) comparar morfológicamente entre poblaciones de una misma especie; (vi) estimar la biomasa de una población edad o talla-estructurada a partir del número de individuos sobrevivientes (abundancia en número), por nombrar algunos.

La relación longitud - peso en la mayoría de las especies marinas está definida por una ecuación de tipo potencial (medida con error) de la forma:

$$w = aL^b + \varepsilon$$

donde w es el peso, L es la longitud, a y b son constantes, ε es la medida de error.

El método de estimación a utilizar para obtener los parámetros de la relación longitud-peso consiste en Mínimos Cuadrados No Lineales (MCNL), que se basa en minimizar la suma de los errores cuadráticos ($S(\theta)$), partiendo de la Ecuación General para Modelos No Lineales, de la forma:

$$y = f(\mathbf{X}_u; \Theta) + \varepsilon$$

Sea

$$S(\Theta) = \sum_{u=1}^{n} [y_u - f(X_u; \Theta)]^2$$

La solución a tal ecuación se obtiene por la derivación del término dentro de la sumatoria respecto de cada parámetro que considera el vector de parámetros θ , de la forma siguiente:

$$S(\Theta) = \sum_{u=1}^{n} \left[y_u - f(X_u; \Theta) \left(\frac{\partial f(X_u; \Theta)}{\partial \Theta} \right)_{\theta = \hat{\theta}} \right]$$

En el caso de la ecuación que describe la relación longitud cefalotorácica-peso, $w = aLC^b + \varepsilon$, $S(\theta)$ tendría la siguiente forma:

$$S(a,b) = \sum_{i=1}^{n} \varepsilon^{2}$$

$$S(a,b) = \sum_{i=1}^{n} (w_{i} - aLC^{b})$$

ya que $f(w) = aLC^b$

$$\frac{\partial f}{\partial a} = LC^b \qquad \qquad y \qquad \qquad \frac{\partial f}{\partial b} = abLC^{b-1}$$

si $a = a_i$ y $b = b_i$ en la iteración j, entonces

$$W_u - f_u^j = [LC_u^b] \cdot [a_{ju} - a_j] + [abLC_u^{b-1}] \cdot [b_{j+1} - b_j]$$

Como el resultado de esta ecuación no se puede encontrar mediante álgebra tradicional, se debe utilizar un método iterativo para estimar los parámetros *a* y *b*. Los parámetros de la relación tamaño - peso se estimaron separadamente tanto para machos y hembras independientemente de la condición reproductiva de los ejemplares estudiados, como para las hembras portadoras de huevos o en condición reproductiva avanzada de acuerdo a los criterios de madurez sexual definidos en el marco del Objetivo Específico 3. Adicionalmente, se estimó la relación tamaño-peso para ambos sexos en conjunto, tanto por región como por foco de abundancia. El tamaño de muestra mínimo se indica en el Objetivo Específico 3.

3.8.4. Pesos medios por intervalo de talla

Los pesos medios por intervalo de talla y su dispersión estadística, para cada foco de abundancia del recurso objetivo, se obtienen utilizando los estimadores que a continuación se detallan. Los intervalos de tamaño se construyen cada 1 mm de LC. Los estimadores son:

$$\overline{w}_{j} = \frac{\sum_{i=l_{[k)}}^{m_{jk+1}} w_{ijk}}{n_{jk}}$$

$$y$$

$$s_{w_{j}}^{2} = \frac{\sum_{i=l_{[jk)}}^{m_{jk+1}} (\overline{w}_{j} - w_{ijk})^{2}}{n_{j} - 1}$$

donde: W_{ijk} : es el peso del *i*-ésimo ejemplar del intervalo de longitud *j* cuyo límite inferior es k;

 $I_{[jk)}$: es el primer elemento del intervalo de longitud j.

 $n_{j,k+1}$: es el número de ejemplares del intervalo de longitud j considerando el

último individuo cuya longitud es k + 1 mm.

 \overline{W}_j : es el peso promedio del *j*-ésimo intervalo de longitud, y

 $S_{w_i}^2$: es la varianza del peso en el *j*-ésimo intervalo de longitud.

3.8.5. Distribución espacial y batimétrica de la longitud media

Se investigó mediante un enfoque geoestadístico la distribución espacial y batimétrica de la longitud media de camarón nailon. Al respecto, las variables a considerar en este análisis fueron: (1) la longitud cefalotorácica promedio, y (2) la proporción de ejemplares mayores a una longitud de referencia, por ejemplo 25 mm LC (%>25 mm LC), considerada como el tamaño mínimo de procesamiento comercial. El propósito de este enfoque es construir cartas de la distribución espacial y batimétrica para las dos variables antes señaladas y evaluar así posibles patrones de segregación espacial por tamaño del recurso estudiado.

3.9. Objetivo Específico 3

Determinar la condición reproductiva del camarón nailon, en el área y período de estudio.

3.9.1. Muestreo biológico a bordo de la nave

Después de depositar la captura en la cubierta de la embarcación, se procede a separar la especie objetivo (camarón nailon). En cada lance se pesan 5 bandejas vacías y con contenido, para determinar el peso neto promedio por bandeja. Luego, se cuenta el número total de bandejas con camarón para obtener la captura total en peso de cada especie. El muestreo biológico consiste en obtener estrictamente al azar 4 kg de camarón nailon. Este procedimiento ha sido utilizado por Acuña *et al.* (2002). A partir de estos datos y para mantener un nivel de precisión de muestreo adecuado, se estimó que el tamaño muestral para frecuencia de tallas es aproximadamente 400 ejemplares por lance, los que corresponden a 3,7 kg, que es lo que se aproxima a 4 kg por razones operacionales (rapidez a bordo en la toma de muestras y mejor uso del tiempo).

Para efectos prácticos, la unidad básica de muestreo biológico es un balde de 4,5 a 5 litros. Los ejemplares se guardan en bolsas de polietileno grueso, con un número correlativo del lance, su posición, fecha y las horas de calado y virado, al menos, y son mantenidas en hielo en escamas mientras están a bordo. Las muestras fueron enviadas al laboratorio de muestreo del Departamento de Biología Marina de la Universidad Católica del Norte, donde se almacenaron congeladas y fueron luego analizadas. En el laboratorio, los ejemplares son sexados, medidos en su longitud cefalotorácica (LC; precisión de 0,1 mm) y pesados (peso total; precisión de 0,01 g).

3.9.2. Tamaño de muestra

En el cálculo de tamaño de muestra para caracterizar la condición reproductiva de camarón nailon en cada fracción del área de estudio se tomó como variable de referencia el peso corporal total (PCT) supeditado al muestreo piloto de la estructura de pesos, de la cual se obtiene el coeficiente de variación ($CV_{(PT)}$). A continuación, se presenta los tamaños muestrales (n) para un nivel de incertidumbre α de 0,05 considerando un error de 10% (d = 0,1) y un coeficiente de

variación teórico entre 10 % y 30% calculado según la expresión dada por Cochran (1979), donde $t_{\alpha,\infty}$ es el valor de la distribución t-Student pare el nivel de incertidumbre α y ∞ grados de libertad. Al mismo tiempo se entrega el tamaño de muestra para distintos niveles del coeficiente de variación.

$$n > \frac{t_{\alpha,\infty}}{\left(\frac{d}{CV_{(LV)}}\right)}$$

$\mathrm{CV}_{(LV)}$	n		
(%)	$(t_{0,05;\infty})$		
10	196		
15	294		
20	392		
25	490		
30	588		

Al respecto, si se utilizara un CV = 15%, entonces el tamaño mínimo de muestra por foco de abundancia sería de 294 ejemplares. En consecuencia, el tamaño de muestra a considerar se asume con un error esperado entre 10% y 15%, lo que equivale a 196 y 294 ejemplares por foco de abundancia. Este tamaño de muestra se utiliza, además, para la estimación de los parámetros de la relación talla-peso descrita en el objetivo específico anterior.

3.9.3. Determinación del estado de desarrollo embrionario de huevos

Para la determinación del estado de madurez sexual de hembras de camarón nailon se utilizó como criterio el estado de desarrollo embrionario o madurez de los huevos portados, basándose principalmente en su coloración, apariencia y grado de desarrollo del vitelo, desarrollo y pigmentación de los globos oculares del embrión, de acuerdo con Palma (1997), cuya tabla de 4 estados ha sido aplicada anteriormente por este grupo de trabajo en el proyecto FIP Nº 2001-05 de evaluación directa de este recurso pesquero. La fecundidad individual de las hembras se determinó a partir de la selección aleatoria de 420 hembras del muestreo biológico-específico en toda el área de estudio (60 hembras por Región) para tener la mejor cobertura geográfica. A su vez, este muestreo se estratifica, contemplándose 3 estratos de LC para tener una amplia cobertura muestral de talla. Debido a que el trabajo a bordo debe ser rápido, la estratificación del muestreo por tamaño consiste en obtener 20 ejemplares (hembras) de tallas pequeñas, 20 de tallas medianas y 20 de tallas grandes por lance. Para evitar la liberación de huevos de la masa ovífera

de cada hembra muestreada que induzca a subestimar la fecundidad, entonces se muestrea solamente hembras en estados de madurez tempranos (Estados 1 y 2 de Palma, 1977).

3.9.4. Proporción sexual

La proporción sexual corresponde a la fracción de hembras o machos en la población. Por ejemplo, la proporción de hembras se calcula para cada lance como:

$$Ph_i = \frac{Nh_i}{\left(Nh_i + Nm_i\right)}$$

donde: Ph_i es la proporción de hembras en el lance de pesca i; Nh_i es el número de hembras en la muestra del lance i; Nm_i es el número de machos en la muestra del lance i.

Luego, la proporción total de hembras para el área y época de estudio se estima por:

$$\overline{Ph} = \sum_{i=1}^{m} Ph_i \cdot w_i$$

donde: \overline{Ph} es la proporción total promedio de hembras; Ph_i proviene de la ecuación anterior; m es el número total de lances de pesca; w_i es la proporción en peso de la captura obtenida en el lance de pesca i, la cual se calcula como:

$$w_i = \frac{C_i}{\sum_{i=1}^m C_i}$$

donde: C_i es la captura en peso del recurso objetivo en el lance de pesca i.

3.9.5. Talla promedio de madurez sexual

Para la estimación de la talla promedio de madurez sexual de hembras se utiliza la información de proporción de hembras ovíferas a la talla. Esta información se ajusta al siguiente modelo logístico:

$$P_l = \frac{1}{1 + e^{a+bl}}$$

donde: P_l es la proporción de hembras ovíferas en el intervalo de talla l; l es la longitud cefalotorácica en milímetros; a y b son los parámetros de intercepto y pendiente de la ojiva de madurez, respectivamente.

La estimación de los parámetros de madurez se realiza minimizando el negativo del logaritmo de la función de verosimilitud (Roa *et al.*, 1999), que corresponde a la siguiente distribución binomial:

$$-\ell(a,b) = -C \sum_{i} [(h) \ln(P_i) + (1+h) \ln(1-P_i)]$$

donde: P_l se calcula de la Ec. anterior; a y b son los parámetros de la ojiva de madurez anteriormente definidos; h es una variable dicotómica (h = 1 es maduro, h = 0 es inmaduro); C es una constante que no afecta la estimación de los parámetros.

Dada la naturaleza no lineal de la función logística de madurez, el mínimo de la función de verosimilitud se encuentra por un algoritmo de iteración (Quasi-Newton). Los parámetros estimados por la función de verosimilitud son los estimados de máxima verosimilitud (MLE = maximum likelihood estimates). Se determina, además, la matriz de covarianza que representa la incerteza asociada a los MLE.

El cálculo de la talla a cualquier proporción de madurez ($l_{P\%}$) está definido por:

$$l_{p\%} = \frac{1}{b} \ln \left(\frac{1}{P_{LT}} - 1 \right) - \frac{a}{b}$$

Para el cálculo de la talla de madurez sexual se utiliza el criterio del 50% ($l_{50\%}$). De esta forma si se reemplaza P_l por 0,5 en la expresión anterior, se tiene que $l_{50\%}$ queda definido por -(a/b).

Luego, se utiliza remuestreo Monte Carlo (con el algoritmo MATSIM) de los estimadores de los parámetros de madurez junto con su distribución de probabilidad asintótica y matriz de covarianza, para generar la distribución de probabilidad del estadístico derivado $l_{50\%}$. A partir de la distribución de probabilidad de $l_{50\%}$, su intervalo de confianza se obtiene por el método percentil. Los límites del intervalo de confianza están definidos por los valores en las posiciones N_{MC} ($\alpha/2$) y N_{MC} (1-($\alpha/2$)), donde N_{MC} es el número de ensayos Monte Carlo. El número de ensayos Monte Carlo realizados para determinar el intervalo de confianza de $l_{50\%}$ es 5000. Además, se determina el intervalo de confianza para las tallas donde se obtenga los porcentajes de madurez del 10, 20, ..., 90%.

3.10. Objetivo específico 4

Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de este recurso durante los cruceros de evaluación.

3.10.1. Introducción

En Chile se ha utilizado la fauna acompañante de las capturas de langostino colorado (Roa et al., 1997), de camarón nailon (Acuña y Arancibia, 1996; Acuña et al., 1997, Acuña et al., 2001) y langostino amarillo (Acuña et al., 1995, Acuña et al., 2004) para caracterizar las comunidades a las que se asocian esos recursos pesqueros. El análisis ha consistido básicamente en identificar asociaciones específicas por medio de métodos multivariados, análisis de clasificación y ordenación. Otra alternativa para probar la hipótesis nula de ausencia de diferencias entre comunidades es el método de permutación no paramétrica ANOSIM. Esta prueba ha sido ampliamente utilizada para contrastar la estructura de comunidades de peces (Fennessy et al., 1994), macroinfauna (Carrasco et al., 1999), meiofauna (Warwick et al., 1997) y macroepifauna (Chapman & Underwood, 1999; Kraufvelin, 1999) y recientemente para identificar ensambles específicos de fauna acompañante en evaluaciones de camarón nailon (Acuña et al., 2001) y

langostinos colorado y amarillo (Acuña *et al.*, 2004). Su ventaja es que entrega un coeficiente de similitud global y para cada par de ensambles específicos comparados, con su respectivo valor de significancia.

Como resultado de los análisis comunitarios efectuados por Acuña *et al.* (2001, 2004, 2005), se detectó que la estructura comunitaria asociada a los recursos langostinos colorado y amarillo está determinada por aquellas especies que contribuyen mayormente a la identificación de ensambles específicos. En los cruceros de evaluación directa de langostino amarillo y langostino colorado estas especies son los peces pejerrata (*Nezumia pulchella*), lenguado de ojos grandes (*Hippoglossina macrops*) y merluza común (*Merluccius gayi*).

Entre los langostinos y camarón nailon existe alguna superposición espacial que ocurre entre el "borde oceánico" (oeste) de la distribución de los langostinos y el "borde costero" (este) del camarón. Esta superposición podría ocurrir a nivel comunitario, lo que debería reflejarse en las principales especies de la fauna acompañante. Por tanto, la descripción comunitaria sugerida aquí permitirá, además, analizar y discutir comparativamente respecto de los patrones comunitarios descritos para los langostinos. Para ello se utilizará la información generada en el presente proyecto y aquella generada en el proyecto FIP N° 2006-04 de evaluación de langostinos. En la eventualidad que los resultados de la evaluación de los langostinos no estén disponibles al momento del presente análisis, se usará aquellos datos correspondientes al proyecto FIP N° 2005-09, también de evaluación de langostinos ejecutado por la asociación UCN-UdeC.

De acuerdo con la teoría ecológica existen especies claves que determinan la estructura comunitaria, aunque tales especies pueden ser reemplazadas cuando ocurren cambios desfavorables para ellas, cualquiera sea su origen o naturaleza, por especies que en condiciones "normales" se encuentran en abundancia baja (Menge, 1995; Menge *et al.*, 1985, 1994). En función de esto se sugiere como metodología de monitoreo de posibles cambios en la estructura comunitaria la determinación de aquellas especies relevantes que caracterizan a los ensambles específicos año a año. En la eventualidad de ocurrencia de perturbaciones que modifiquen la estructura de la comunidad, ello se verá reflejado en las especies claves. Para el efecto se propone

utilizar procedimientos expuestos utilizando los datos de los proyectos FIP Nº 2003-05, FIP Nº 2004-10 (ejecutados por PUCV-IFOP) y el presente.

Un aspecto relevante en la definición del diseño de muestreo de especies como *H. reedi* es el conocimiento de la zona de distribución. Al respecto resulta relevante el uso de datos provenientes de evaluaciones de langostinos, ya que en algunos lances de estas evaluaciones también se captura camarón nailon. Entonces, como las evaluaciones de langostinos tienen su intensidad de muestreo mayor más hacia la costa que las evaluaciones de camarón nailon, por la distribución de cada uno de los recursos objetivo, entonces se puede contar con información que habitualmente no está disponible en evaluaciones de camarón nailon. De este modo se propone considerar evaluar el procedimiento de incorporar la información (CPUE por lance para las principales especies del by-catch) de evaluaciones de langostinos para mejorar la definición del límite costero de los focos de distribución de camarón nailon por medio de los procedimientos descritos más adelante.

3.10.2. Metodología

3.10.2.1. Descripción de la abundancia de la fauna acompañante

De acuerdo con el numeral 6.6 de las Bases especiales de este proyecto, se entrega un listado de las especies que se capturaron en calidad de fauna acompañante durante los cruceros, indicándose su frecuencia de ocurrencia (en número y porcentaje), captura (ton) e importancia relativa (porcentaje en peso) tanto respecto de la captura total como respecto de la captura del recurso objetivo camarón nailon, por Región. Debido a que la captura puede no ser un buen indicador de la importancia relativa de cada especie en la fauna acompañante, ya que cada especie responde distintamente al arte de pesca camaronero, se agrega un listado de la CPUE promedio por especie, ordenando las especies de mayor a menor CPUE.

Para los análisis comunitarios se trabajó con aquellas especies que componen la fauna acompañante cuyo aporte relativo, en peso, fue superior al 10%. debido a que aquellas con un

aporte menor no aportan información relevante y, en conjunto, constituyen una parte marginal de las capturas y de la CPUE. Para cada especie se describe, en sentido batimétrico y latitudinal, la estructura de abundancia relativa (CPUE), frecuencia de ocurrencia en el total de lances (lances positivos) e importancia relativa porcentual respecto a la totalidad de la fauna acompañante como respecto a la especie objetivo. Los estratos batimétricos son de 50 a 100 m de profundidad, lo que dependerá de la distribución de los lances de la evaluación y/o de la agrupación batimétrica de los ensambles comunitarios. De esta forma cada estrato está representado por un número adecuado de lances por sector. Se opta por un rango de estrato de 100 m de profundidad como máximo ya que un rango mayor puede enmascarar diferencias importantes en la distribución batimétrica de las especies analizadas y de los ensambles comunitarios.

La descripción latitudinal se efectuó para cada región del área de estudio. Es muy probable que esta regionalización no guarde relación con la estratificación propia de los recursos, de acuerdo a sus propias relaciones y con el medio. Por tal motivo, se efectua una segunda estratificación de acuerdo a la estructura comunitaria que se logre identificar según los procedimientos metodológicos expuestos más abajo.

3.10.2.2. Identificación de asociaciones

Se identificó las asociaciones de la macrofauna en la escala espacial con el Método de Clasificación (Análisis de Cluster o de Dendrograma) y el Método de Ordenación Multidimensional (MDS) (Clifford & Stephenson, 1975), utilizando el software PRIMER (Plymouth Marine Laboratory; Clarke & Warwick, 1994). Este análisis consiste en comparar de a pares todos los lances de pesca, en función de la CPUE de cada especie, utilizando el Indice de Similitud de Bray-Curtis (*IBC*, Bray & Curtis, 1957), cuya expresión es la siguiente:

$$IBC = \frac{\sum_{i=1}^{p} \left| \boldsymbol{\chi}_{ij} - \boldsymbol{\chi}_{ik} \right|}{\sum_{i=1}^{p} \left(\boldsymbol{\chi}_{ij} + \boldsymbol{\chi}_{ik} \right)}$$

donde p es el número de puntos de muestreo; X_{ij} : es la CPUE de la especie i en el lance j, X_{ik} : es la CPUE de la especie i en lance k.

Con los valores de similitud se construye una matriz de similitud, la que se utiliza para efectuar el análisis de clasificación y ordenación. Para balancear los valores atípicos (especies raras) con los valores comunes (especies comunes), se transforma los datos originales de abundancia relativa (CPUE) aplicando raíz cuarta ($\sqrt{\sqrt{}}$), según el criterio propuesto por Clarke & Warwick (1994).

3.10.2.3. Determinación de diferencias entre asociaciones

En el análisis anterior el nivel de corte del índice de similitud para definir a un conglomerado específico es arbitrario y no necesariamente el nivel escogido tiene algún sentido biológico. Por ejemplo, en una comparación de gremios de predadores terrestres españoles y chilenos, los predadores locales no mostraron diferencias al variar el nivel de corte de similitud entre 50% y 90%. En cambio los predadores españoles mostraron cambios importantes en la estructura gremial al elevar el nivel umbral (Jaksic & Delibes, 1987). Por este motivo, para verificar que el valor umbral utilizado genera conglomerados específicos distintos, se probó su significancia por medio de un método análogo al MANOVA, denominado ANOSIM (Analysis of Similarities) (Clarke & Green, 1988) y que se describe más adelante.

En estricto rigor, para utilizar ANOSIM es necesario definir *a priori* los grupos a comparar. Sin embargo, aquí el sentido del uso es de validación del nivel de corte en la similitud del análisis anterior. Entonces, no se trata de comparar grupos con distintas condiciones (ambientales, interacción, etc.). En la literatura se puede encontrar estudios en que se ha aplicado indistintamente ANOSIM a grupos identificados por dendrogramas (*a posteriori*) como identificados, por ejemplo, bajo el criterio de grupos distintos entre el día y la noche (*a priori*) (Velasco & Wolf, 2000).

Una vez que se ha identificado las diferentes asociaciones de especies a través del Análisis de Clasificación, éstas se compararon con los procedimientos de ANOSIM, que se encuentran implementados en el software PRIMER, y que consisten en una permutación no paramétrica

aplicada a la matriz de similitud de rangos basada en la ordenación o clasificación de las muestras. Este método entrega el coeficiente R y su respectivo nivel de significancia, y se encuentra definido por la siguiente ecuación:

$$R = \frac{(\overline{r_B} - \overline{r_w})}{n(n-1)/4}$$

donde: r_B es el promedio de los rangos de similitud de todos los pares de réplicas en los diferentes sitios (estratos); r_W es el promedio de todos los rangos de similitud entre réplicas dentro de cada sitio (estrato). El valor de R se encuentra ente -1 y +1. Sin embargo, valores menores a 0 son poco probables, ya que correspondería a zonas de pesca distintas con valores de similitud mayores a los de puntos geográficos dentro de estas zonas de pesca. Un valor igual o aproximado a cero señala que la similitud entre y dentro del las zonas geográficas es aproximadamente el promedio, es decir, las asociaciones específicas no muestran diferencias en la estructura de sus valores de CPUE. Un valor igual a 1 ocurre cuando todas las réplicas de una zona de pesca son iguales entre sí y distintas a las de cualquier otra zona de pesca en la comparación, es decir, las asociaciones específicas muestran diferencias en la estructura de sus valores de CPUE.

3.10.2.4. Contribución de cada especie en la (di)similitud

Para determinar la contribución de cada especie a la similitud entre las muestras de un mismo grupo se calcula para cada una de ellas su proporción de similitud. Para esto se parea cada muestra dentro de un mismo grupo, calculando el porcentaje de similitud especie por especie mediante el índice de similitud de Bray & Curtis, de tal forma que la contribución a la similitud de la *i*-ésima especie entre dos muestras, de un mismo grupo, *j* y *k* está dada por:

$$s_{jk}(i) = 100 \cdot \left(1 - \frac{|x_{ij} - x_{ik}|}{\sum_{i=1}^{p} (x_{ij} + x_{ik})}\right)$$

donde: p es el número de muestras; X_{ij} es la abundancia de la especie i en la muestra j, X_{ik} es la abundancia de la especie i en la muestra k.

Para la determinación de la contribución de cada especie a la (di)similitud entre grupos se sigue un procedimiento análogo al anterior. En efecto, se parea cada muestra entre un grupo y otro, contrastándolos todos para calcular el porcentaje de disimilitud especie por especie mediante el índice Bray & Curtis, de tal forma que la contribución a la (di)similitud de la *i*-ésima especie entre dos muestras, de distintos grupos, *j* y *k* está dada por:

$$\delta_{jk}(i) = 100 \cdot \frac{\left| x_{ij} - x_{ik} \right|}{\sum\limits_{i=1}^{p} \left(x_{ij} + x_{ik} \right)}$$

donde p es el número de muestras; X_{ij} es la abundancia de la especie i en la muestra j, X_{ik} es la abundancia de la especie i en la muestra k.

3.10.2.5. Distribución de camarón nailon y su superposición espacial con langostinos

• Superposición espacial

Se calculará un Indice de Superposición Espacial (*ISE*) que entrega una visión cuantitativa de la superposición de los recursos camarón nailon y langostinos. Este índice es análogo al índice de superposición de nicho de Pianka (1977) y corresponde a:

$$ISE = \frac{\sum_{i=1}^{n} p_{ij} \cdot p_{ik}}{\sqrt{\sum_{i=1}^{n} p_{ij}^{2} \sum_{i=1}^{n} p_{ik}^{2}}}$$

donde: p_{ij} y p_{ik} son la proporción del *i*-ésimo parche de superposición respecto a la superficie total del recurso j y k, respectivamente. Para la obtención de la varianza de este índice se utilizó jacknife (Efron & Tibshirani, 1993).

• Mapeo de la incertidumbre local

Con el análisis de incertidumbre local, expuesto más adelante, se construyeron mapas de probabilidades de ocurrencias de valores mayores a un límite umbral de CPUA y se clasificó en función de una probabilidad de 0,8. De este modo se establecen los límites de los focos de abundancia, que en el caso del límite costero de H. reedi se complementó con la información proveniente de la evaluación de los langostinos. Para ilustrar esto se presenta un ejemplo con los datos de CPUA (ton/km²) de merluza común del proyecto de evaluación directa de los langostinos amarillo y colorado FIP N° 2004-11. Este análisis fue efectuado para determinar patrones espaciales de los recursos camarón nailon, langostinos (colorado y amarillo) y merluza común, en el marco del proyecto FIP Nº 2004-43. En la Figura 8A se presenta un mapa de probabilidades de ocurrencia de valores superiores a 1,2 ton/km², que se consideró umbral para definir la presencia de un foco de abundancia. Luego, se clasificó la zona en función de presencia y ausencia de focos, de acuerdo a la probabilidad límite de 0,8 (Fig. 8B). A partir del mapa de clasificación, con técnicas SIG, se delineó los focos de abundancia de Merluccius gayi (Figura 8C). Aquí también se presenta los focos de abundancia de *Pleuroncodes monodon*. De este modo se pudo determinar la superficie que ocupa cada recurso y aquella que comparten. Luego, se efectuó un análisis análogo en el presente proyecto.

• Enfoque del método

El problema consiste en estimar el valor de CPUE(z) que exceda un valor critico z_c (umbral mínimo para considerar la existencia de banco), en un punto no muestreado (u_0 , u= vector de coordenadas (x,y)). La información disponible consiste en valores de la variable z en N puntos u_j , j= 1, 2,..., N.

En geoestadística el valor z(u) para cualquier punto u es visto como una realización particular de la variable aleatoria Z(u) en los lugares u. Los valores desconocidos $z(u_0)$ son entonces una realización de la variable $Z(u_0)$ y el problema entonces se transforma en estimar la probabilidad condicional que $Z(u_0)$ exceda el valor critico z_c , dado los datos $z(u_i)$.

$$\Pr\{Z(u_0) > z_c | z(u_j), j = 1, 2..., N\} = 1 - \Pr\{Z(u_0) \le z_c | z(u_j), j = 1, 2..., N\}$$
$$= 1 - F(u_0; z_c | N)$$

donde $F(u_0; z_c | N)$ es la probabilidad condicional o "posterior" de los valores verdaderos menores que el límite z_c ; N es la información condicionante (datos observados).

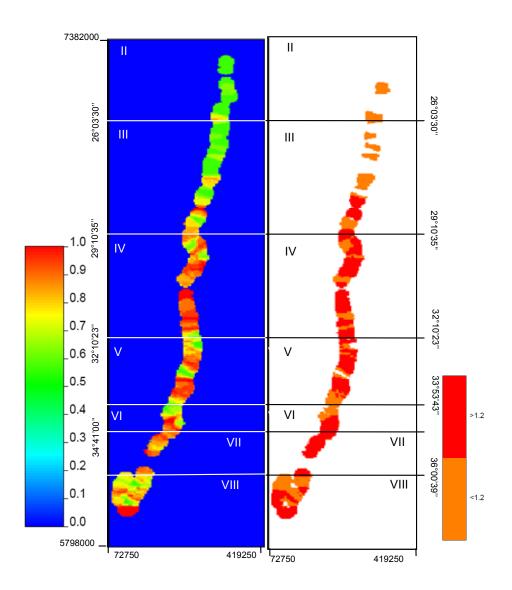


Fig. 8. (A) Mapa de probabilidad de exceder el valor umbral de 1,2 ton/km² de *Merluccius gayi*; (B) clasificación de zonas con valores mayores y menores al nivel umbral, de acuerdo a una probabilidad de 0,80; (C) focos de abundancia de *M. gayi* y *Pleuroncodes monodon*. Tomado del proyecto FIP N° 2004-11 (ejecutado por UCN + UdeC).

Las variables continuas como CPUE = CPUA pueden ser clasificadas dentro de dos clases en función de un nivel crítico z_c . Una clase contiene a los valores menores o iguales a z_c y la otra todos los valores mayores. Con esto se crea una nueva variable, binaria y también aleatoria, o *Indicador I(u;z_c)*, que se define como:

$$I(u; z_c) = \begin{cases} 1 & si & Z(u) \le z_c \\ 0 & si & en & otro & caso \end{cases}$$

Entonces, el Enfoque de Indicadores (Journel, 1983) se basa en la probabilidad condicional definida como la esperanza (esperanza matemática) de la variable indicadora en el punto no muestreado u_o , dada la información existente para la variable Z en los N puntos de muestreo, lo que se expresa como:

$$F(u_o; z_c|N) = E\{I(u_o: z_c|N)\}$$

con

$$I(u_{0}; z_{c}) = \begin{cases} 1 & si & Z(u_{0}) \leq z_{c} \\ 0 & si & en otro \ caso \end{cases}$$

que es la variable indicadora en los puntos no muestreados, cuya observación $i(u_o; z_c)$ está dada por la observación de la variable original en el punto muestreado $j(z(u_i))$, que se define como:

$$i(u_{0}; z_{c}) = \begin{cases} 1 & si & z(u_{j}) \leq z_{c} \\ 0 & si & en otro \ caso \end{cases}$$

La codificación binaria asume que el error es despreciable.

• Variograma para Indicadores y Kriging con Indicadores

Luego de la codificación se caracteriza la distribución espacial del indicador con su semivarianza, la que toma la forma:

$$\hat{\gamma}_{I}(h;z_{c}) = \frac{1}{2N(h)} \sum_{j=1}^{N(h)} \left\{ i(u_{j};z_{c}) - i(u_{j} + h;z_{c}) \right\}^{2}$$

donde $i(u_j; z_c)$ y $i(u_j + h; z_c)$ son los indicadores de u_j y $u_j + h$ separados por la distancia h.

N(h) es el número de pares de comparación a cada lag (distancia h). El significado de $\gamma_I(h; z_c)$ corresponde a la medida de la frecuencia con que cambia el indicador de 0 a 1. Dicho de otro modo, es la frecuencia de transición entre las dos clases de Z en función de h.

De acuerdo al teorema de proyección (Luenberger, 1969), el estimador mínimos cuadrados (kriging) de $I(u_o;z_c)$ es el estimador mínimos cuadrados de la esperanza condicional. De esta forma la probabilidad $F(u_o;z_c|N)$ puede ser estimada por kriging usando la transformación de indicadores de la variable original Z. De este modo, el kriging pasa a llamarse kriging de indicadores, y el que se usará en este estudio es el kriging ordinario de indicadores.

3.11. Objetivo Específico 5

Registrar y analizar las condiciones ambientales asociadas a los principales focos de abundancia del recurso.

3.11.1. Antecedentes

Todas las especies que habitan en el océano están de una u otra manera fuertemente relacionadas con las condiciones ambientales en las que desarrollan sus historias de vida. Sin embargo, hay algunas de ellas que dependiendo de la fase de su historia de vida establecen diversas relaciones con éstas, así por ej. las especies bentónicas, como el camarón nailon tienen básicamente tres fases diferentes en su historia de vida: la cópula y portación temprana de los huevos por la hembra ocurren en el ambiente bentónico, una vez liberadas las distintas fases de desarrollo larval éstas ocurren en el ambiente pelágico, planctónico para ser más precisos y finalmente, concluida esta etapa, retornan al ambiente bentónico.

En cada una de estas distintas etapas, el camarón nailon establece relaciones con distintas variables ambientales características, así por ej. las condiciones imperantes en la columna de agua tienen realmente influencia sobre las fases planctónicas, pero no tienen una relevancia con respecto a las fases bentónicas de la especie, ya que aquí pasan a ser más importantes las condiciones cercanas al fondo y los sedimentos, con los distintos aportes que puedan llegar a éstos, dependiendo de la ubicación geográfica de las áreas de pesca.

3.11.2. Propuesta Metodológica:

3.11.2.1. Análisis de antecedentes

Hasta el momento se han realizado 11 proyectos de Evaluación directa de camarón nailon financiados por el FIP. Sin embargo, sólo en dos de ellos se ha incluido en los Objetivos Específicos el registro y análisis de las condiciones ambientales en el área de muestreo, específicamente las principales variables oceanográficas. Los dos estudios en los cuales se investigó la relación entre éstas últimas y los resultados de capturas de camarón nailon, son los de Pavez (1996) y Arana *et al.* (2003). En el capítulo resultados, se realiza una revisión de estos estudios y se resumen los hallazgos cuando esa información fue requerida.

3.11.2.2. Relación de características del sustrato y CPUA

Dado lo planteado anteriormente, y tratándose del estudio de fases relacionadas con el ambiente bentónico, el análisis de las condiciones ambientales asociadas a los principales focos de abundancia del recurso (expresada como CPUA, ton/km²), se realiza considerando las carácterísticas observadas en los sedimentos marinos, donde se encuentra el camarón nailon, dada su mayor permanencia en el tiempo y los cambios relativamente lentos de éstos en las profundidades de estudio de este recurso pesquero.

Tal como se señaló previamente, los antecedentes sobre la relación de las características ambientales o específicamente oceanográficas con la abundancia de las especies de crustáceos comerciales, han formado parte de los Objetivos Específicos de pocos estudios del camarón nailon, sin embargo, varias de las Evaluaciones directas de las dos especies de langostinos *Pleuroncodes monodon* y *Cervimunida johni*), consideraron dichos análisis, utilizando distintas metodologías y midiendo distintas variables oceanográficas (Acuña *et al.*, 2009). En consecuencia para efectos de este estudio se han considerado los antecedentes sobre los sedimentos disponibles en esos proyectos, además de incorporar al análisis otros proyectos que consideraron el estudio del fondo donde se ubica el camarón nailon, aunque no se cuente necesariamente con datos de CPUA obtenidos simultáneamente, como por ej. los proyectos FIP N° 2004-45 "Determinación de las zonas y épocas de reclutamiento de camarón nailon, langostino amarillo y langostino colorado en el litoral comprendido entre la III y IV Regiones" y FIP N° 2005-61 "Caracterización del fondo marino entre la III y X Regiones".

Como lo determinaron Acuña *et al.* (2009), las metodologías de análisis granulométrico y contenido de materia orgánica de los sedimentos marinos superficiales empleadas en el desarrollo de cada uno de los estudios anteriormente mencionados, en particular por distintas Instituciones, no son necesriamente equivalentes, por lo cual se utilizan los estudios que han sido desarrollados por la UCN - UdeC que sí son comparables y se desarrollaron de la siguiente forma:

La recolección de las muestras se realizó en algunos proyectos desde la Lancha de Investigación Oceanográfica Stella Maris II, de la Universidad Católica del Norte, Sede Coquimbo o utilizando otras embarcaciones de tipo pesquero (Acuña *et al.*, 2009). Para la obtención de muestras se utilizó en todos los proyectos una draga del tipo Smith-McIntyre de capacidad de 0,015 m³ y de un grado de eficiencia promedio superior al 70% de los lances, dependiendo de las características de compactación del fondo.

El replanteo de las estaciones de muestreo, en algunos muestreos, se realizó mediante métodos de intersección de visuales, trisecciones, el uso del radar o GPS diferenciales, dependiendo de las características morfológicas de cada sector a trabajar. De acuerdo a Normas Nacionales e Internacionales Hidrográficas y Topográficas las características de entorno del muestreo a

realizar, definen la metodología o metodologías a emplear. Cabe destacar, que el borde costero de las Regiones III y IV presentan características topográficas complejas en algunos sectores, por lo tanto, en esta situación se requiere combinar metodologías de posicionamiento.

Recolectadas las muestras, éstas fueron lavadas y secadas en una estufa a 60 a 80°C, para posteriormente cuartearlas y obtener la submuestra para el análisis granulométrico. Las submuestras correspondientes al análisis granulométrico, fueron tamizadas a intervalos de 1/2 phi, empleando para ello un agitador de tamices Tayler, modelo RX-24. Para el caso de las muestras que presentaron porcentajes de grava significativos, se emplearon tamices de mayor tamaño y en el caso que predominaran el fango y las arcillas se emplearon métodos de decantación de partículas.

En el estudio de la distribución granulométrica de los sedimentos, se empleó la denominación Wentworth (1922). Los parámetros correspondientes a diámetro medio y grado de selección o desviación de cada muestra, fueron calculados de acuerdo a las metodologías descritas por Folk y Ward (1957).

Con el objeto de complementar la información batimétrica publicada, se efectuaron sondajes y registros batimétricos complementarios en algunos sectores de muestreo, para tales efectos se utilizaron los ecógrafos Furuno modelo FE-824 y Kaijo Denki modelo PS-11E. En el posicionamiento de los puntos, se emplearon G.P.S. diferenciales Magellan modelo ProMark X y equipos topográficos convencionales tales como, teodolitos Wild modelo T-16 y Pentax modelo TH-10D y distanciómetro electrónico Pentax modelo PM-81.

Para el análisis de materia orgánica (MO) de los sedimentos marinos superficiales, se utilizó el método de calcinación Byers *et al.*, (1978) en la mayoría de los proyectos.

Con respecto a los datos de CPUE que se utilizan en el análisis, éstos corresponden a los obtenidos durante los últimos seis años por el Consercio UCN – UdeC en las correspondientes evañluaciones directas de las dos especies de langostinos, ya que pueden ser estandarizados

adecuadamente por haber sido obtenidos en las mismas condiciones tanto de muestreo como de duración, medición del tiempo de arrastre efectivo, etc.

Con los datos de las características de los sedimentos y mediante el SIG se generaron coberturas o mapas de distribución de las mismas, las que sirvieron como base para el despliegue de las CPUE de la especie, las que fueron subdivididas en categorías. Con esta información georreferenciada se generaron distribuciones de frecuencia de las distintas categorías de CPUE detectadas en cada uno de los distintos tipos de sedimentos, estableciéndose de esta manera las potenciales relaciones entre cada sedimento con las CPUE observadas de camarón nailon, en forma análoga a lo realizado por Kostylev *et al.* (2003) (Fig. 9), quienes aplicaron un enfoque similar para establecer la relación entre las características del sustrato y ostión gigante (*Placopecten magellanicus*) en Browns Bank, en la plataforma continental de Escosia,

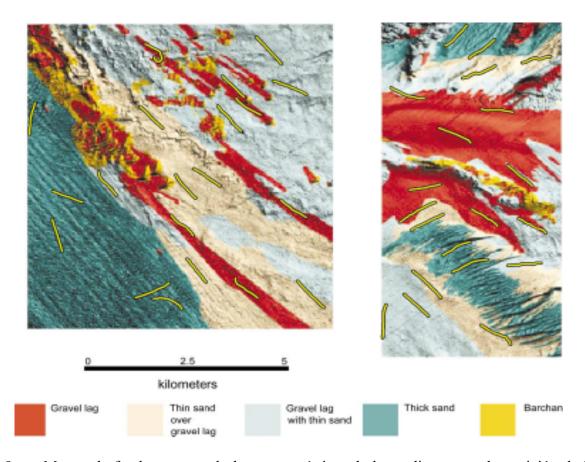


Fig. 9. Mapeo de fondo, mostrando las características de los sedimentos y la posición de los lances realizados en el lugar (trazos amarillos). Tomado de Kostylev *et al.* (2003).

3.12. Objetivo Específico 6

Analizar la situación actual del recurso en la zona de estudio, considerando los antecedentes de la pesquería y los resultados del proyecto.

En las pesquerías de crustáceos chilenas, el camarón nailon (*Heterocarpus reedi*, Bahamonde 1955) constituye una especie de importancia con capturas que han fluctuado entre 3,9 y 10,6 mil t entre 1990 y 2005. La especie se distribuye desde Taltal hasta Puerto Saavedra, en un rango batimétrico que fluctúa entre los 155 y 420 m, de preferencia en sustratos de arcilla (Acuña *et al.* 2003). La pesquería de camarón nailon se inicia en 1957 como una especie alternativa para los arrastreros dedicados a la pesca de langostino amarillo, principalmente entre Coquimbo y San Antonio. La pesquería se mantuvo con libertad de acceso hasta 1994, sin estar sujeta a ningún tipo de regulación. En 1995, la pesquería fue declarada en estado de explotación plena (DS 611, 26-10-95), y a contar de 1996 Subsecretaría de Pesca comenzó a fijar cuotas anuales de captura. En el 2001, se estableció una veda total para las regiones V a VIII, y también entró en vigencia la Ley de Límite Máximo de Captura por Armador (Ley 19.713), con asignación de cuotas globales asignada a los armadores y fraccionada para el sector artesanal e industrial. De esta manera, desde el 2001 la pesquería de camarón nailon se concentra en la zona centro-norte de Chile. Para el 2008, la cuota asciende a 4.945 ton como especie objetivo por el sector industrial (3.956 ton) y artesanal (989 ton) en el área comprendida entre la II y VIII Región.

La situación del stock de camarón nailon se ha establecido sobre la base de las siguientes metodologías:

- Análisis de Cohortes a la talla (Jones, 1984) y sus modificaciones (Zuleta y Moreno 1993), y posterior análisis de puntos biológicos de referencia mediante rendimiento y biomasa por recluta (Pavez et al., 1996, Arana, 2001, Acuña et al. 2000, 2002);
- Análisis Secuencial de Cohorte en Talla (ASCT) por Canales et al. (1999) para el periodo 1972 – 1997;
- Modelo de Biomasa Dinámico, con una función logística para el excedente de producción por Arana et al. (2003);
- Modelo talla-estructurado (CASA) de Sullivan *et al.* (1990) por el Instituto de Fomento Pesquero (e.g Canales *et al.*, 2003, SSP 2002), y

• Modelo talla-estructurado por Acuña *et al.* (2007), con datos compilados hasta el 2006.

Los modelos aplicados en el punto (a) suponen una estructura de tallas estables, asumiendo que el reclutamiento, la mortalidad y el crecimiento se han mantenido sin variaciones durante tantos años como clases anuales estén presentes en los datos de composición por tamaños; una aproximación que solamente es válida ante datos limitados. El ASCT (Canales *et al.*, 1999) fue el primer intento por analizar la dinámica del stock, tratando de integrar la mayor cantidad de datos disponibles en un largo periodo de tiempo (1972-1997). Sin embargo, los autores evaluaron al stock sin tomar en cuenta las diferencias sexuales en el crecimiento, lo que podría tener implicancias que deben necesariamente ser evaluadas. Por otra parte, el modelo de biomasa dinámico que utiliza una función logística para el excedente de producción aplicado por Arana *et al.* (2003), si bien permite el análisis de los cambios dinámicos en el excedente de producción debe necesariamente ser contrastado con modelos más complejos, particularmente cuando la información estructurada de la población está disponible.

En los últimos años, el Instituto de Fomento Pesquero ha analizado la situación de camarón nailon básicamente a través del modelo talla-estructurado de Sullivan *et al.* (1990) (ver SSP 2001; SSP, 2002, Canales *et al.*, 2003). Este modelo, utiliza una función estocástica para el crecimiento a través de la distribución gamma, y trabaja bien cuando se especifica el parámetro β y la distribución por tallas del reclutamiento es cuidadosamente descrita a través de una función de densidad de probabilidad (Quinn y Deriso, 1999).

Un aspecto de fundamental importancia en un modelo talla-estructurado lo constituye la matriz de transición del crecimiento, ya puede tener impacto en la evaluación. En efecto, algunas funciones aceptan crecimiento nulo y negativo, mientras otras no. En el modelo de evaluación descrito por Sullivan *et al.* (1990), la distribución gamma se utiliza para modelar la matriz de transición para el crecimiento. Sin embargo en el FIP Nº 2006-11, Acuña *et al.* (2007) muestran que la distribución log-normal fue la más verosímil para representar la probabilidad de distribución alrededor del incremento anual promedio esperado de cada clase de longitud en el camarón nailon.

En efecto, la matriz de transición del crecimiento puede ser descrita por otras funciones como la distribución normal (Chen *et al.* 2000, Breen *et al.* 2003), log-normal (Hobday y Punt, 2001), y recientemente la función beta-binomial (Björnsson y Sigurdsson 2003), mientras que para calcular el incremento promedio de crecimiento entre grupos de longitud usualmente se utiliza la función de crecimiento de von Bertalanffy. Punt *et al.* (1997) determina la matriz de transición del crecimiento para la langosta de Tasmania, utilizando datos de marcaje y recaptura; y Troynikov (1998) propone una forma unificada flexible para la parametrización estocástica considerando heterogeneidad en el crecimiento. En el caso del camarón nailon se cuenta con varias funciones de crecimiento (ver Tabla 7). Sin embargo, de los parámetros de crecimiento disponibles, solo puede utilizar los parámetros de crecimiento de camarón nailon establecidos por Roa y Ernst (1996). Los autores comunican los errores estándar de los parámetros de crecimiento, las longitudes medias y la desviación estándar, datos necesarios para construir la matriz de transición de crecimiento que será calculada fuera del modelo de evaluación (Acuña *et al.* 2007).

Tabla 4. Parámetros de crecimiento en longitud de camarón nailon.

	L_{∞}	K	t_0	ϕ 'a	
Sexo	(LC, mm)	(año ⁻¹)	(año)		Fuente
Machos	37,7	0.343	-0.117	2.688	Ziller (1993)
Hembras	43,9	0.305	0.170	2.769	
Machos	52,1	0.105	0.508	2.455	Pavez et al. (1996)
Hembras	52.9	0.149	0.614	2.620	
Ambos	46.3	0.138	0.374	2.471	Canales <i>et al.</i> (1999)
Machos	40.7	0.199	-0.809	2.518	Roa y Ernst (1996)
Hembras	48.3	0.174	-0.510	2.608	

^aGrowth performance index, i.e. $\phi' = \log_{10} K + 2\log_{10} L_{\infty}$ (Pauly y Munro 1984).

Los modelos de evaluación talla-estructurados han tenido un desarrollo reciente para poblaciones explotadas, principalmente para invertebrados en los cuales es difícil determinar la edad, con énfasis en crustáceos (Punt y Kennedy, 1997; Quinn *et al.*, 1998; Fu *et al.*, 1999, 2001; Fu y Quinn, 2000; Hobday y Punt, 2001; Frøysa *et al.*, 2002; Breen *et al.*, 2003; Punt, 2003). Para los fines de esta propuesta, el estado de situación del camarón nailon se determinará considerando los siguientes componentes de un modelo de evaluación talla-estructurado basado en Hobday y Punt (2001) y Punt (2003):

3.12.1. Dinámica básica

La ecuación que especifica el número de animales del sexo s en la clase de longitud l al comienzo del año t toma en cuenta la mortalidad natural, crecimiento y reclutamiento:

$$N_{t+1,l}^{s} = \sum_{l'} X_{l',l}^{s} N_{t,l'}^{s} \exp(-M)(1 - S_{t,l'}^{s} F_{t}) + R_{t,l}^{s}$$

donde $N_{t,l'}^s$ es el número de animales de sexo s en la clase de longitud l al comienzo del año t, $X_{l',l}^s$ es la proporción de animales de sexo s en la clase de longitud l' que crece dentro de la clase de longitud l a fines de año, M es la tasa de mortalidad natural (asumida independiente del tamaño y tiempo), $S_{t,l'}^s$ es la selectividad del arte sobre animales del sexo s en la clase de longitud l durante el año t, F_t es la tasa de explotación sobre la fracción completamente seleccionada (i.e. $S_{t,l'}^s = 1$) de animales durante el año t, y $R_{t,l}^s$ es el reclutamiento de animales de sexo s a la clase de longitud l a fines del año t.

3.12.1.1. Reclutamiento

Se evaluó un modelo básico en que la proporción sexual del reclutamiento anual se asumió1:1, y que el reclutamiento ocurre solamente en la primera clase de tamaños. Para una parametrización simple, y dada la corta serie de tiempo de datos disponibles, el reclutamiento anual se estimó como sigue:

$$R_{t,l}^s = 0.5\overline{R} \exp(\varepsilon_t)$$

donde \overline{R} es el reclutamiento promedio y ε_t representa los residuos del reclutamiento en la escala logaritmica, siendo una variable que se asume con distribución normal con media cero y varianza constante (σ_r^2) .

3.12.1.2. Capturas

La captura anual en peso (C_t , ton) se asume ocurre a mitad del año (después de la mitad de la mortalidad natural), y se utilizó para calcular la tasa de explotación anual para la fracción de tallas completamente seleccionadas:

$$F_{t} = \frac{C_{t}}{\sum_{s} \sum_{l} S_{t,l}^{s} W_{l}^{s} N_{t,l}^{s} \exp(-M/2)}$$

donde: el denominador representa la biomasa explotable a mitad de año, y W_l^s es el peso promedio por clases de longitud l, asumido constante para todo el periodo de evaluación, y el que se calculará según:

$$W_{I}^{s} = a^{s} L_{I}^{b^{s}}$$

donde a^s y b^s representan los parámetros de la relación longitud peso para los animales de sexo s y longitud Ll, que representa la longitud promedio entre los límites inferior y superior de la clase de tamaños l.

3.12.1.3. Selectividad

Se asumió que la selectividad del arte tiene una forma logística. El modelo básico consideró selectividad constante, mientras que modelos alternativos incluyen variabilidad interanual en la selectividad asumiendo que ésta impacta solo al tamaño de 50% de selección, i.e.

$$S_{l,t}^{s} = \left[1 + \exp(-\ln(19)(L_l - L_{50,t}^{s} - \eta_t)/D^{s}\right]^{-1}$$

donde $\eta_t \approx N(0, \sigma_\eta^2)$, $L_{50,t}^s$ es la longitud al nivel de 50% de selección para los animales de sexo s durante el año t; i.e.

$$L_{50,t}^{s} = L_{50,t-1}^{s} + \delta_{t}$$

donde $\delta_t \approx N(0, \sigma_\delta^2)$, σ_η^2 es la varianza de las fluctuaciones aleatorias en la longitud de 50% de selección, y σ_δ^2 es la varianza de los cambios graduales en la longitud de 50% de selección (modelo de caminata aleatoria), y D^s es el ancho lineal del patrón de selectividad que representa la diferencia entre el tamaño al nivel de 50% y 95% de selectividad.

Se cuenta con información de composición por tamaños en los cruceros de evaluación anuales, de tal manera que la evaluación considera un modelo logístico similar para los cruceros.

3.12.1.4. Matriz de transición del crecimiento

La matriz de transición que representa el crecimiento se determinará según la siguiente expresión general:

$$X_{l,l'}^{s} = \int_{L_l - \Delta l/2}^{L_l + \Delta l/2} FDPdL$$

donde Δl representa el ancho de las clases de talla, FDP es una función de densidad de probabilidad (gamma, normal, o log-normal), en tanto el incremento anual de crecimiento esperado para la clase de longitud l estará representado por los parámetros del modelo de von Bertalanffy, i.e.

$$\Delta L_l^s = (L_{\infty}^a - L_l^s)(1 - \exp(-K^s))$$
 para $L_l^s < L_{\infty}^s$

y

$$\Delta L_l^s = 0 \text{ para } L_l^s \ge L_\infty^s$$

La longitud esperada, E(x), de un animal de longitud L_l^s de sexo s una unidad de tiempo después viene dada por:

$$E(x) = L_i^s + \Delta L_i^s$$

La probabilidad alrededor del incremento promedio se incorpora para un animal de longitud L_l^s , asumiendo que su longitud, x, una unidad de tiempo más tarde puede ser modelada por alguna función de densidad de probabilidad.

Como fue mostrado por Acuña *et al.* (2007), la FDP log-normal con los parámetros de crecimiento de Roa y Ernst (1996) fue la más verosímil y es la que se utilizó para construir la matriz de transición de crecimiento, i.e.

$$g(x \mid \Delta L_l^s, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{\Delta L_l^s} \exp\left(-\frac{\left(\ln(L_l^s / \Delta L_l^s)\right)^2}{2\sigma^2}\right)$$

En este modelo, σ es la desviación estándar de la longitud esperada, común para todas las clases de talla. Esta función de densidad de probabilidad se reemplazó en:

$$X_{l,l'}^{s} = \int_{L_l - \Delta l/2}^{L_l + \Delta l/2} FDPdL$$

3.12.1.5. Condiciones iniciales

Las condiciones iniciales corresponden a la estructura de tallas de la población en equilibrio con respecto a una tasa de explotación (F_I) inicial a comienzos del primer año de evaluación. En este contexto, el estado inicial es la solución de la siguiente ecuación:

$$\widetilde{N}_{l}^{s} = \sum_{l} X_{l',l}^{s} N_{l'}^{s} \exp(-M)(1 - S_{l'}^{s} F_{1}) + 0.5\overline{R}$$

La matriz de transición del crecimiento es una matriz triangular inferior, de tal manera que la siguiente ecuación puede ser utilizada recursivamente:

$$\widetilde{N}_{l}^{s} = \begin{cases} 0.5\overline{R} / \left\{ 1 - X_{1,1}^{s} \exp(-M)(1 - S_{1}^{s} F_{1}) \right\} & si \quad l = 1 \\ \sum_{l=1}^{l-1} \widetilde{N}_{l}^{s} X_{l,l}^{s} \exp(-M)(1 - S_{l}^{s} F_{1}) & si \quad l > 1 \end{cases}$$

3.12.1.6. Datos disponibles

Para la pesquería de camarón nailon se cuenta con los siguientes datos:

- a) Cruceros de evaluación directa: El Fondo de Investigación Pesquera ha demandado la ejecución de cruceros de evaluación directa mediante el método de área barrida y se cuenta con la siguiente información desde 1996:
 - Biomasa total y desagregada por regiones.
 - Coeficiente de variación para la biomasa.
 - Abundancia y proporción a la talla para animales de sexo s, en la región k.
 - Relación longitud-peso, total, por sexo y región.
 - Fecundidad en función de la talla y peso, total y por región.
 - Ojiva de madurez sexual, total y por región
- b) Pesca comercial: Subsecretaría de Pesca, el Instituto de Fomento Pesquero y la UCN cuentan con información de la pesquería comercial consistente en:
 - Captura por unidad de esfuerzo,
 - Composición por longitudes de la captura,
 - Capturas anuales

3.12.1.7. Funciones de verosimilitud

El modelo básico utilizó las siguientes observaciones: a) capturas anuales, b) biomasa evaluada por cruceros, c) composición por tallas por sexo en los cruceros de evaluación, d) captura por unidad de esfuerzo, y e) composición por tallas en las capturas de la flota.

Biomasa explotable

a) Cruceros de evaluación:

La ecuación que predice la biomasa explotable a mitad de año y que puede ser comparada con aquella de los cruceros desde el modelo de evaluación, es la siguiente:

$${}^{c}B_{t}^{e} = \sum_{s} \sum_{l} {}^{c}S_{l}^{s}W_{l}^{s}N_{t,l}^{s} \exp(-M/2)$$

que define la biomasa explotable a mitad de año, como la biomasa disponible al momento de la evaluación menos la mitad de la captura anual. El super-índice c a la derecha de la selectividad indica que el patrón de explotación es el del crucero. La biomasa de los cruceros de evaluación (observaciones) se considera directamente proporcional a ${}^cB_t^e$ a través de una constante de escalamiento (ψ) , i.e.

$$^{Obs}B_t^e = \psi^c B_t^e$$

La contribución de estos datos a la función de verosimilitud es dada por:

$$\ell_{1} = \prod_{t} \frac{1}{Obs} \frac{1}{B_{t}^{e} \sqrt{2\pi} \sigma_{\psi}} \exp \left[-\frac{(\ln(Obs}B_{t}^{e}) - \ln(\psi OB_{t}^{e}))^{2}}{2(\sigma_{\psi})^{2}} \right]$$

donde σ_{ψ} es la desviación estándar de las fluctuaciones aleatorias en la constante de escalamiento, ψ , y $^{Obs}B_t^e$ es la biomasa explotable observada en los cruceros de evaluación. El estimador máximo verosímil de ψ puede ser obtenido analíticamente, i.e.

$$\hat{\psi} = \exp\left(\frac{1}{n}\sum_{t}\ln({^{Obs}B_{t}^{e}}/{^{c}B_{t}^{e}})\right)$$

donde *n* corresponde al número de años para los cuales se cuenta con datos de biomasa explotable observados (cruceros).

b) Captura por unidad de esfuerzo

La biomasa explotable a mitad de año que corresponde a la biomasa disponible para la pesquería, es un modelo equivalente que se diferencia solamente en el uso de la selectividad para la pesquería, i.e.

$$B_{t}^{e} = \sum_{s} \sum_{l} S_{t,l}^{s} W_{l}^{s} N_{t,l}^{s} \exp(-M/2)$$

En tanto, la captura por unidad de esfuerzo observada ($CPUE_t$) estará relacionada con la biomasa explotable disponible a la pesquería a través del coeficiente de capturabilidad (q), i.e.

$$CPUE_t = qB_t^e$$

La contribución de los datos de CPUE a la función de verosimilitud viene dada por:

$$\ell_2 = \prod_t \frac{1}{CPUE_t \sqrt{2\pi\sigma_q}} \exp \left[-\frac{\left(\ln(CPUE_t) - \ln(qB_t^e)\right)^2}{2(\sigma_q)^2} \right]$$

donde σ_q es la desviación estándar de las fluctuaciones aleatorias en el coeficiente de capturabilidad, q, y $CPUE_t$ es la captura por unidad de esfuerzo observada. El estimador máximo verosímil de q puede ser obtenido analíticamente, i.e.

$$\hat{q} = \exp\left(\frac{1}{n}\sum_{t}\ln(CPUE_{t}/B_{t}^{e})\right)$$

donde *n* corresponde al número de años para los cuales se cuenta con datos de CPUE observados.

Composición por tallas

Se utilizó los datos de frecuencia de tallas provenientes del muestreo en los cruceros de evaluación y en las capturas comerciales (por sexo). La fracción de la captura en número durante el año t de animales de sexo s que están en la clase de talla l se denota por ${}^c p_{t,l}^s$ para los datos observados en los cruceros y por $p_{t,l}^s$ para los observados en las capturas. Las cantidades estimadas por el modelo que serán contrastadas con las observaciones toman en cuenta la selectividad de los cruceros y de la pesquería y el número de individuos en cada clase de tallas.

En el caso de los cruceros de evaluación, se considera que:

$$^{c}\hat{p}_{t,l}^{s} = ^{c}S_{l}^{s}N_{t,l}^{s} / \sum_{l'} ^{c}S_{l'}^{s}N_{t,l'}^{s}$$

un modelo similar, se utiliza para las proporciones por longitud de las capturas reemplazando la selectividad de la pesquería, i.e.

$$\hat{p}_{t,l}^{s} = S_{t,l}^{s} N_{t,l}^{s} / \sum_{l'} S_{t,l'}^{s} N_{t,l'}^{s}$$

Se asume que los valores de proporciones a la talla siguen una distribución multinomial, determinando las siguientes funciones de verosimilitud (ignorando constantes):

$$\ell_3 = \prod_s \prod_t \prod_l \binom{c}{p_{t,l}^s}^{o\tilde{n}_t^{sc} \hat{p}_{t,l}^s} \text{ para los datos de los cruceros}$$

y

$$\ell_4 = \prod_s \prod_t \prod_l (p_{t,l}^s)^{\partial \tilde{n}_t^s \hat{p}_{t,l}^s}$$
 para los datos que provienen de la pesca comercial,

donde \tilde{n}_t^s es el número de animales de sexo s que fueron medidos en el año t, y ω es un factor que pondera los datos de frecuencia de longitud respecto de otros datos. Este parámetro es necesario porque la función de verosimilitud está basada en el supuesto que los datos de frecuencia de tallas se obtienen a partir de una sola muestra aleatoria simple de la captura. Sin embargo, hay variación adicional y al utilizar $\omega = 1$ se otorga demasiado énfasis a los datos de frecuencia de tallas.

3.12.1.8. Penalizaciones e información a priori

Los resultados desde la evaluación son presentados en la forma de distribuciones *a posteriori* Bayesiana para salidas claves sobre la situación del recurso. Información *a priori* para todos los parámetros estimables se especificarán para permitir la aplicación de métodos Bayesianos en la evaluación de stock. El "prior" para el logaritmo del reclutamiento promedio corresponderá a una distribución uniforme evaluada como $U(-\infty,\infty)$ con la intención que este "prior" no sea informativo. Debe ser mencionado que ningún prior puede ser verdaderamente "no informativo" porque un "prior" que no es informativo para una cantidad en un modelo será informativo para otras cantidades en ese modelo (Punt y Hilborn, 1997). El prior para los residuales del reclutamiento será $N(0, \sigma_r^2)$. El valor a priori de σ_r^2 se asume igual a 0,4 y desviación estándar de 0,1. El prior para la tasa de explotación inicial se asume uniforme U(0,1), nuevamente para representar ignorancia.

La penalización para los residuales del reclutamiento queda definida por

$$z_1 = \frac{1}{2\sigma_r^2} \sum_t (\varepsilon_t)^2$$

Mientras que para la tasa de explotación, en el caso en que las capturas sean mayores que la biomasa explotada, por:

$$z_2 = 10000 \sum_{t} \left(1 + \frac{0.001C_t}{0.99B_t^e} \right)$$

Para desarrollar las distribuciones a posterior se utilizó MCMC (Markov Chain Monte Carlo, Gelman *et al.* 1995), el cual trabaja bien con superficies a posterior complejas encontradas en modelos de evaluación talla-estructurados como el propuesto (Punt y Hilborn, 1997). Se evaluará las muestras *a posteriori* obtenidas para analizar la magnitud de la correlación entre muestras adyacentes de conjuntos de parámetros y se comparará la variabilidad en los valores promedio de las salidas del modelo entre diferentes secciones de la cadena Monte Carlo. El diagnostico de estas evaluaciones permitirá indagar sobre la convergencia, y determinar un número adecuado de ciclos del algoritmo MCMC, la fracción "burn in" que debe ignorarse y la selección relativa al "thinning" en la cadena restante.

3.12.1.9. Análisis de riesgo

El propósito del análisis de riesgo es evaluar las implicancias de acciones de manejo alternativas para el estado futuro del recurso en un periodo de 10 años. Las implicancias de las diferentes acciones de manejo se resumirán en los cambios que exhiban en el tiempo la biomasa explotable. Las acciones de manejo consideradas corresponden a una secuencia futura de capturas.

Se seleccionaron 100 conjuntos de valores de parámetros desde la distribución *a posteriori* para tomar en cuenta la incertidumbre. Cada proyección involucra calcular la estructura de la población a partir del conjunto de parámetros y proyectando al futuro dado diferentes niveles de captura (p.e. 0, 2500, 5000, 7500 t). Los resultados del análisis de riesgo son presentados a la forma de perfiles de distribución acumulada.

3.12.1.10. Implementación y proceso de estimación

El modelo de evaluación aquí descrito y sus variantes se implementaron en AD Model Builder de diferenciación automática que permite resolver modelos complejos no-lineales (Otter Research 1999, otter@island.net). AD Model Builder permite una estimación eficiente y rápida, otorgando gran flexibilidad al usuario para modificar el modelo y analizar variantes. AD Model Builder

utiliza derivativas exactas respecto de los parámetros del modelo (diferenciación automática). Además, es muy útil para modelos con una gran cantidad de parámetros, provee estimaciones rápidas y precisas de la matriz Hessiana en el máximo (o mínimo), lo que permite contar con la matriz de covarianza, correlación, y por lo tanto con límites de confianza para todos los parámetros de interés a través del método Delta (Seber y Wild, 1989). A su vez, AD Model Builder permite evaluar políticas de explotación alternativas a través del algoritmo MCMC (Gelman *et al.* 1995).

4. **RESULTADOS**

4.1. Aspectos operacionales de los cruceros

Los cruceros de evaluación se realizaron entre el 21 de junio y el 30 de diciembre de 2008. En la Tabla 5 se resume las actividades de muestreo ejecutadas mediante la programación de la embarcación arrastrera participante en el estudio.

Tabla 5. Variables operativas del estudio de evaluación directa de camarón nailon entre la II y VIII Regiones.

VARIABLE OPERATIVA	VALOR	(%)	TOTAL	
Período	21/0	21/06/2008 - 30/12/2008		
Rango de Latitud	25° 16,29' S - 36° 41,79' S			
Rango de Profundidad (m)	124 – 517			
Lances propuestos	439			
Lances Investigación ejecutados	485		570	
Lances de remuestreo	22			
Lances comerciales	61			
Lances alternativos	2			
Total lances ejecutados	570	100		
Lances con pesca	469	82,28	100	
Lances sin pesca	101	17,72		
Lances con captura de camarón	409	71,75	71,75 28,25	
Lances sin captura de camarón	161	28,25		
Lances con medición de APA	292	51,23	100	
Lances sin medición de APA	278	48,77	100	
Tiempo total de arrastre	150,93	100		
Tiempo de arrastre con pesca	127,85	84,71		
Tiempo de arrastre con captura de				
camarón	113,00	74,87		
Tiempo de arrastre sin captura	23,08	15,29		

En la Tabla 6 se entrega detalles de los lances propuestos entre la II y VIII Regiones (n= 439) y efectivamente efectuados (n= 570) dentro de los caladeros históricos del recurso camarón nailon.

Tabla 6. Número de lances propuestos y efectuados totales en los caladeros históricos de camarón nailon, por Región.

REGION	PROPUESTOS	EJECUTADOS	DIF
2	25	28	3
3	78	99	21
4	120	222	102
5	74	72	-2
6	42	39	-3
7	57	70	13
8	43	40	-3
TOTAL	439	570	131

En la Tabla 7 se detalla los lances donde se capturó efectivamente la especie objetivo, observándose que la mayor fracción de lances positivos para camarón nailon correspondió a la zona de la IV a la VII Región, con un máximo de 92,3% en la VI Región, bajando drásticamente en la VIII Región a un 55%.

Tabla 7. Lances con captura de camarón nailon por Región y porcentaje con respecto a los lances efectuados en cada caso.

REGION	LANCES	CAPTURA	%
II	28	9	32,14
III	99	65	65,66
IV	222	163	73,42
V	72	58	80,56
VI	39	36	92,31
VII	70	56	80,00
VIII	40	22	55,00
TOTAL	570	409	71,75

La información de fechas y lugares geográficos de los muestreos se detalla en el Anexo 1, en el Anexo 2 se adjuntan los registros de los lances efectuados por nave, con geoposición, distancia lineal recorrida, área barrida, abertura de punta de alas (APA), captura (kg) y rendimiento de pesca (CPUA). En el Anexo 3 se entregan las características técnicas de las redes utilizadas.

4.2. Estandarización de las naves y estimación directa de la APA

4.2.1. Estandarización de las naves

La prueba estadística de t-Student de comparación de medias con varianzas desiguales, para probar la existencia de diferencias significativas entre la CPUA promedio entre embarcaciones, acepta la hipótesis nula de igualdad de las medias (Ho: $\mu_1 = \mu_2$). Esto es, no se encontraron diferencias significativas entre los valores no cero de densidad promedio (cpua) entre naves al nivel de probabilidad de 5% (Tabla 8). En consecuencia, no se hace necesario corregir el esfuerzo de pesca nominal ponderándolo por el poder de pesca relativo de cada nave.

Tabla 8. Resultados de la prueba estadistica t-Student de comparación de medias con varianzas desiguales (Sokal & Rohlf, 1979) entre la densidad poblacional promedio (ton/km2) entre las embarcaciones PAM "FOCHE" y L/M "ISABEL-S".

Variable	PAM Foche	L/M Isabel-S			
CPUE prom =	7,866	7,063			
D.E.(cpue) =	9,035	7,584			
n =	355	210			
$sp^{2} = sp = t = gl = tc = sp$	76,675 8,525 1,081 563	$\alpha = 5\%$			
$sp^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$					

4.2.2. Estimación directa de la APA

La estimación de abertura de punta de alas (APA) se realizó con la información recogida por el sistema NETMIND de NorthStar Technical de ondas acústicas, cuyos sensores (2) se fijaron en las puntas de las alas de la red (Anexo 4). Este sistema mide posición y apertura en forma casi continua con intervalos de 1-2 segundos. Para el caso de los lances donde no se midió

directamente el APA, se obtuvo un modelo funcional de la APA para el PAM FOCHE y L/M ISABEL-S mediante Modelos Generales Linealizados (glm, generalizead linear model) utilizando el paquete "Stats" implementado en el ambiente y lenguaje computacional R (www.R-project.org). Las variables incorporadas en el análisis fueron la APA (m) como variable respuesta, la velocidad de arrastre (*Vel.*, nudos), la longitud del cable de cala (*LCC*, m) y la profundidad de calado (*Prof*, m). El modelo funcional de la APA quedó representado por la expresión (según el lenguaje R):

$$glm(APA \sim LCC + Prof + Vel, family = gaussian)$$

La medida de bondad de ajuste está dada por el parámetro de dispersión de la familia gaussiana (pdg) y es equivalente al valor de r^2 utilizado como medida de bondad de ajuste en el caso de la regresión simple o múltiple. Luego, conocidos los ponderadores del modelo funcional (Tabla 9), y las variables independientes se calculó la APA en aquellos lances de pesca en que no se contó con registro directo mediante el equipo NETMIND.

Tabla 9. Parámetros de la relación funcional entre la APA (variable dependiente) y las variables independientes *LCC*, *Prof* y *Vel* en el PAM "FOCHE" y L/M ISABEL-S. pdg = parámetro de dispersión de la familia gaussiana.

Variable	PAM Foche	L/M Isabel-S
LCC	0,0001	0,0071
Prof	0,0040	-0,0017
Vel	-1,3769	-2,1403
Constante	9,4836	14,4377
pdg	0,8890	0,6876

4.1. Capturas y densidad local (CPUA) por lance de pesca.

Las capturas por lance de pesca de 15 minutos fluctuaron entre cero (ausencia de pesca) y 1.609 Kg. La densidad local (por lance de pesca) fluctuó entre cero (cuando no hubo captura) y 69,2 ton/km². Se descartó del análisis todos aquellos lances en que las dificultades de operación (profundidad no apta, fondo no rastreable, otras) o climáticas impidieron el buen desempeño de la

nave. La distribución espacial de la densidad (ton/km²) por especie y zona de análisis geoestadístico se entregan en el Anexo 6.

4.2. Aspectos biológicos.

4.2.1. Capturas y muestreo biológico.

Durante el período y zona de estudio (II a VIII Regiones) se midió 54.991 ejemplares de camarón nailon en su LC (m) para construir las distribuciones de frecuencia de tallas; además, se pesó 20.591, para estimar la relación longitud-peso. En la Tabla 10 se entrega la información del esfuerzo total de muestreo de frecuencia (ejemplares medidos) y biológico-específicos (ejemplares pesados).

Tabla 10. Esfuerzo total de muestreo de frecuencia (medidos) y biológico específicos (pesados) de la captura de camarón nailon entre la II y VIII Regiones.

			REGION						
SEXO	DATOS	II	III	IV	V	VI	VII	VIII	TOTAL
Machos	Medidos	394	3.663	9.357	4.054	2.846	4.757	2.151	27.222
Machos	Pesados	167	1.359	3.259	1.381	981	1.799	646	9.592
Hembras s/huevos	Medidos	781	4.321	7.275	2.265	1.622	2.629	1.070	19.963
neilioras s/liuevos	Pesados	291	1.410	2.793	808	542	883	359	7.086
Hembras c/huevos	Medidos	14	501	2.871	2.523	851	776	270	7.806
Hemoras Chiuevos	Pesados	14	186	2.062	889	306	349	107	3.913
Total Medidos		1.189	8.485	19.503	8.842	5.319	8.162	3.491	54.991
Total Pesados		472	2.955	8.114	3.078	1.829	3.031	1.112	20.591

4.2.2. Composición de tamaños.

4.2.2.1. Machos por foco.

La composición de tamaños de los machos de camarón nailon mostró distribuciones de frecuencia unimodales en casi todos los focos (caladeros) detectados durante el año 2008 entre la II y VIII Regiones (Fig. 10 - 13). Considerando el área de estudio, en los 26 focos detectados el rango de tamaño observado para los machos se extendió entre 11,2 y 39,8 mm LC, encontrándose el macho de talla menor en el foco 10 (IV Región) y el mayor en el foco 24 (VII Región). El rango más amplio de tallas se encontró en el foco 12 y el más estrecho en el foco 11.

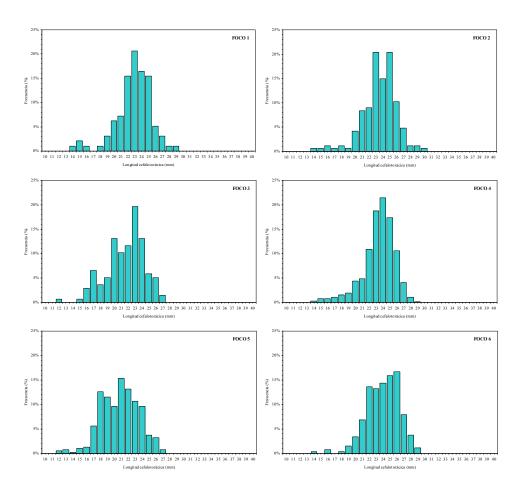


Fig. 10. Distribución de frecuencias de tamaño de machos de camarón nailon (*H. reedi*). Focos 1 a 6.

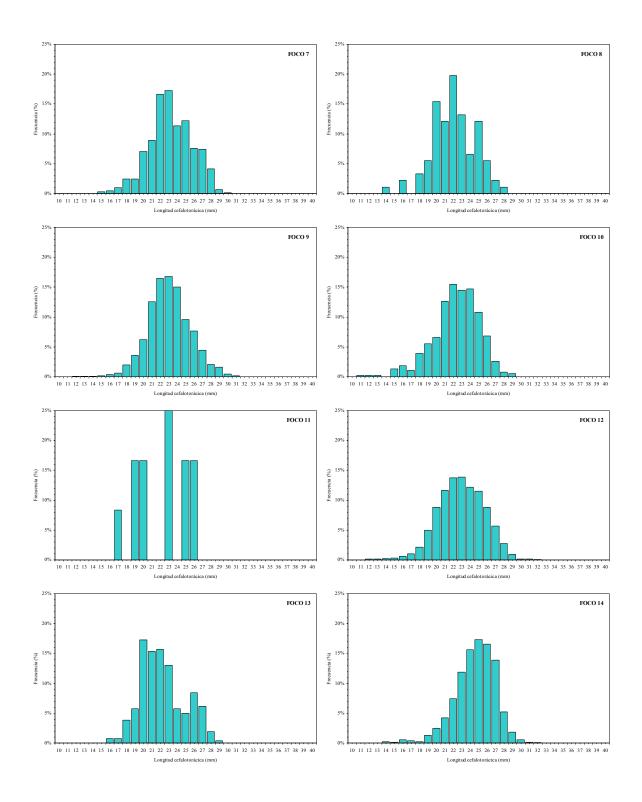


Fig. 11. Distribución de frecuencias de tamaño de machos de camarón nailon (*H. reedi*). Focos 7 a 14.

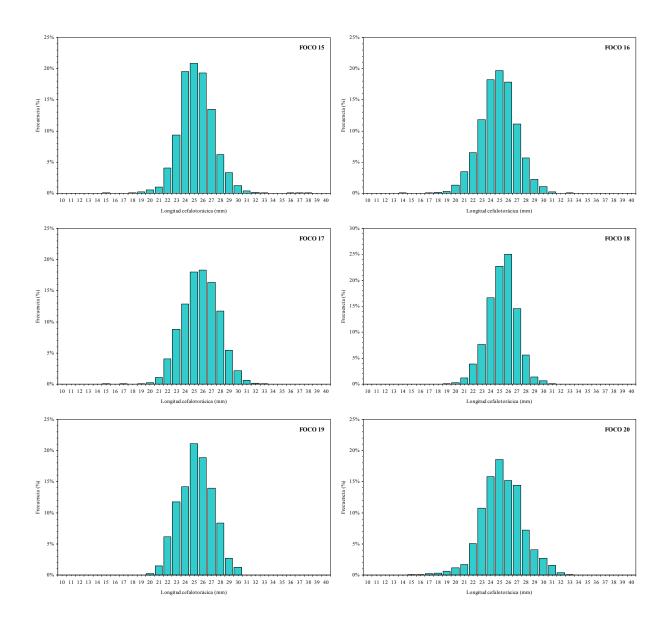


Fig. 12. Distribución de frecuencias de tamaño de machos de camarón nailon (*H. reedi*). Focos 15 a 20.

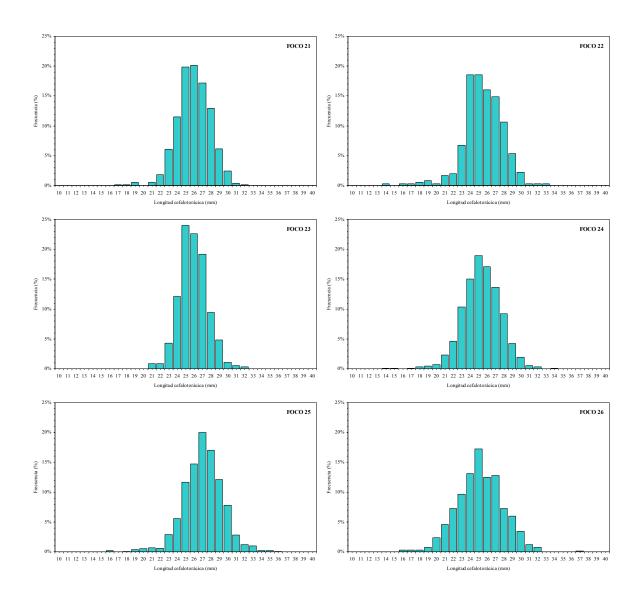


Fig. 13. Distribución de frecuencias de tamaño de machos de camarón nailon (*H. reedi*). Focos 21 a 26.

4.2.2.2. Hembras por foco

En el caso de las hembras de camarón nailon, al igual que en los machos, la composición de tamaños por foco (caladero) en todos aquellos detectados durante este año 2008, entre la II a VIII Regiones, mostró distribuciones de frecuencias bimodales (Fig. 14-17). Sin embargo, para algunos focos (22 al 26) la especie presentó distribuciones de tipo polimodal, con una clase en las tallas pequeñas, seguida de la principal entre los 24 y 26 mm de LC, y una tercera en los 30 mm de LC. Considerando toda el área de estudio, el rango de tamaño observado de hembras se extendió entre 10,1 y 39,4 mm LC, encontrándose la hembra de mayor talla en el foco 20 (VI Región) y la de menor talla en el foco 12 (IV Región). El rango más amplio de tallas se encontró en el foco 17 y el más estrecho en el foco 11.

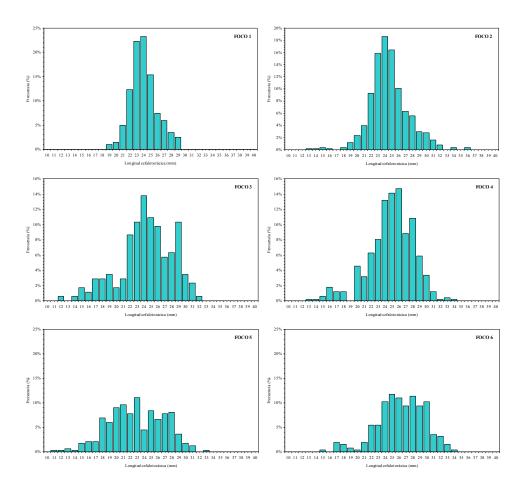


Fig. 14. Distribución de frecuencias de tamaño de hembras de camarón nailon (*H. reedi*). Focos 1 a 6.

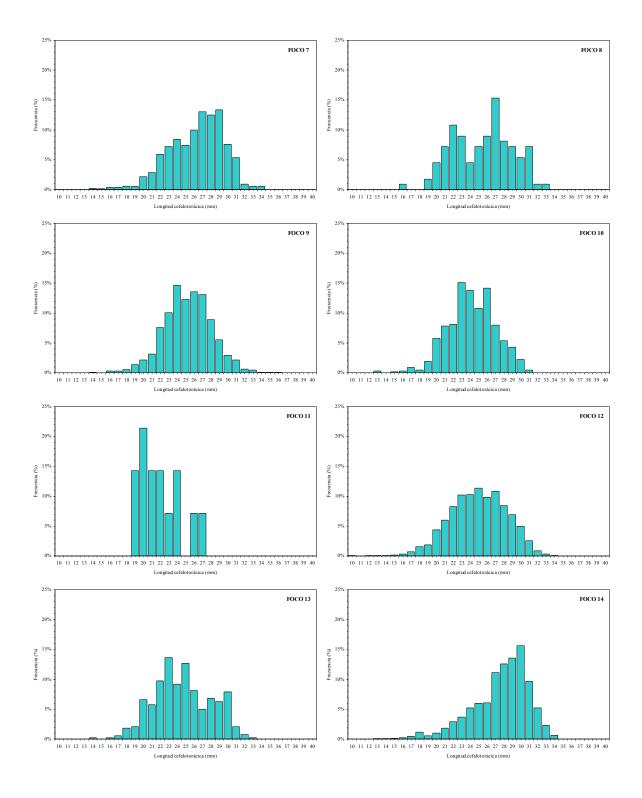


Fig. 15. Distribución de frecuencias de tamaño de hembras de camarón nailon (*H. reedi*). Focos 7 a 14.

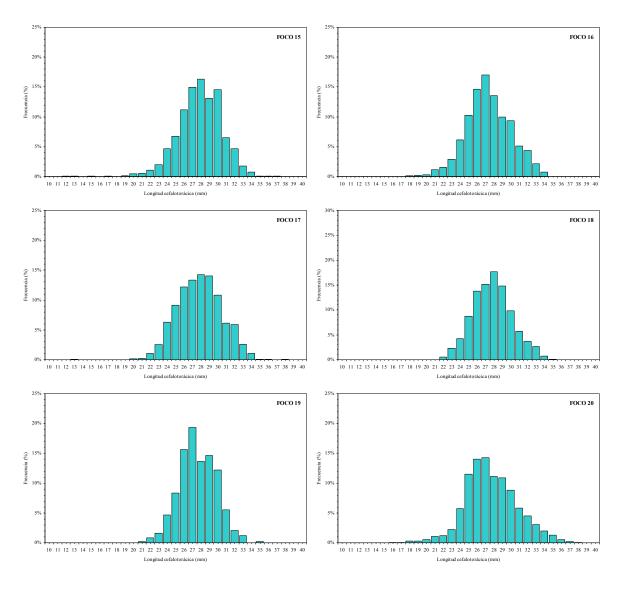


Fig. 16. Distribución de frecuencias de tamaño de hembras de camarón nailon (*H. reedi*). Focos 15 a 20.

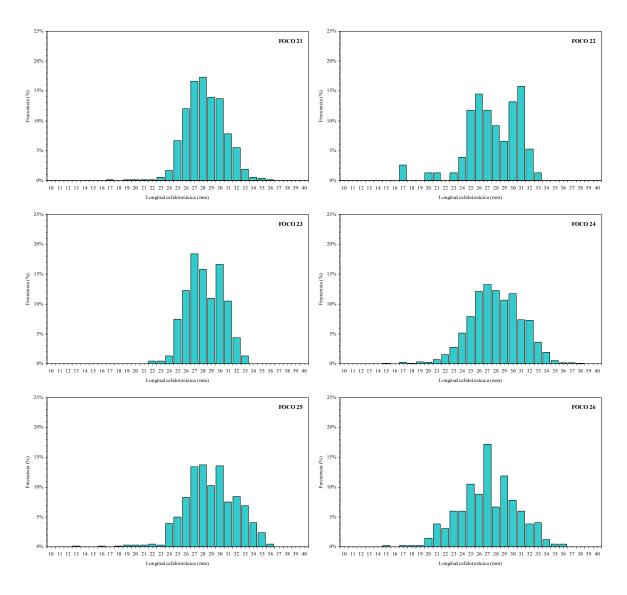


Fig. 17. Distribución de frecuencias de tamaño de hembras de camarón nailon (*H. reedi*). Focos 21 a 26.

4.2.2.3. Sexos combinados por Región.

El rango de tallas global de camarón nailon (sexos combinados) en toda el área de estudio correspondió a 10,1 - 39,8 mm LC, mientras los rangos observados en las distintas regiones corresponden a 12,7 - 36,9 mm LC en la II Región; 11,4 - 37,8 mm LC en la III Región; 10,1 - 38,7 en la IV Región; 13,9 - 38,8 mm LC en la V Región; 14,5 - 39,4 mm LC en la VI Región, 14,5 - 39,8 en la VII Región; y 13,1 - 37,1 mm LC en la VIII Región (Fig. 18). En términos globales, se observa una tendencia a encontrar una fracción mayor de tallas más grandes de norte a sur.

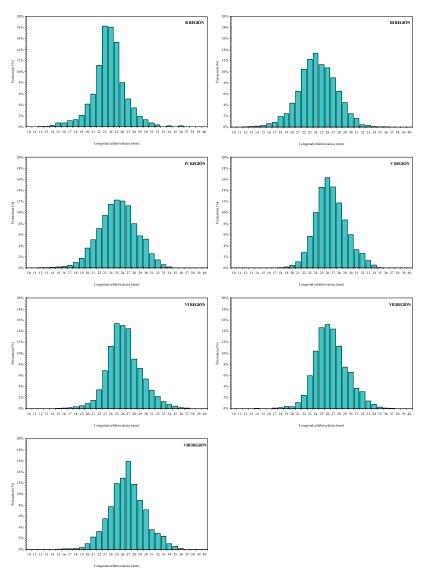


Fig. 18. Distribución de frecuencias de tamaño de camarón nailon (*H. reedi*), sexos combinados por región.

4.2.2.4. Machos por Región

El rango de tallas global de machos de camarón nailon (II-VIII Regiones) correspondió a 11,2 - 39,8 mm LC, mientras los rangos observados en las distintas regiones muestreadas corresponden a 12,7 - 30,9 mm LC en la II Región; 12,1 - 31,5 mm LC en la III Región; 11,2 - 38,7 mm en la IV Región; 15,8 - 33,6 mm LC en la V Región; 14,5 - 35,8 mm LC en la VI Región; 14,5 - 39,8 mm en la VII Región y 15,1 - 37,1 mm LC en la VIII Región; todas las distribuciones son unimodales (Fig. 19). En términos globales, se observa una tendencia a encontrar una fracción mayor de tallas más grandes de norte a sur, en particular en la VIII Región.

4.2.2.5. Hembras por Región.

El rango de tallas global de hembras de camarón nailon (toda el área de estudio) correspondió a $10,1-39,4\,$ mm LC, mientras los rangos observados en las distintas regiones muestreadas corresponden a $13,1-36,9\,$ mm LC en la II Región; $11,4-37,8\,$ mm LC en la III Región; $10,1-37,4\,$ mm LC en la IV Región; $13,9-38,8\,$ mm LC en la V Región; $15,9-39,4\,$ mm LC en la VI Región; $15,7-38,5\,$ mm LC en la VII Región y $13,1-36,7\,$ mm LC en la VIII Región; las distribuciones de la II a la V Regiones son unimodales, en tanto las de la VI y VIII Regiones presentan una tendencia a la polimodalidad (Fig. 20). En términos globales, se observa una tendencia a encontrar una fracción alta de tallas mayores de norte a sur.

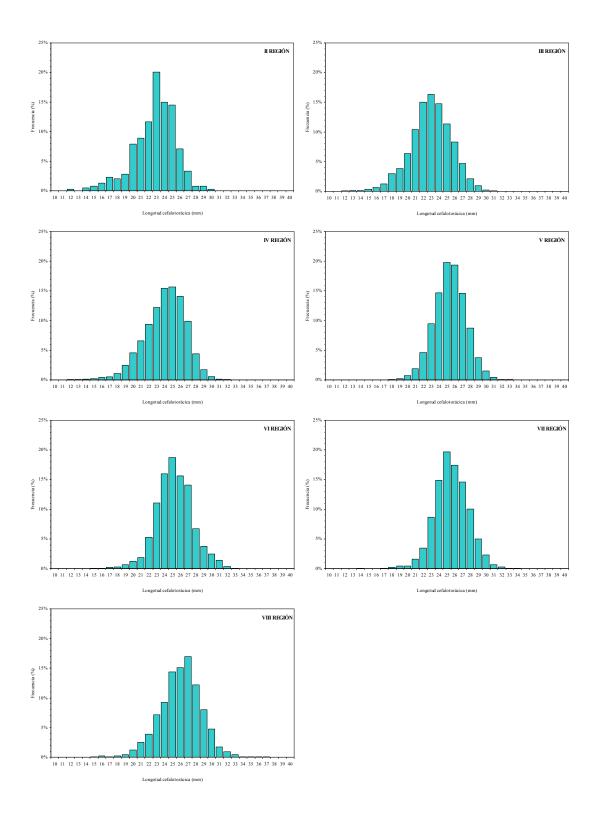


Fig. 19. Distribución de frecuencias de tamaño de machos de camarón nailon (*H. reedi*), por región.

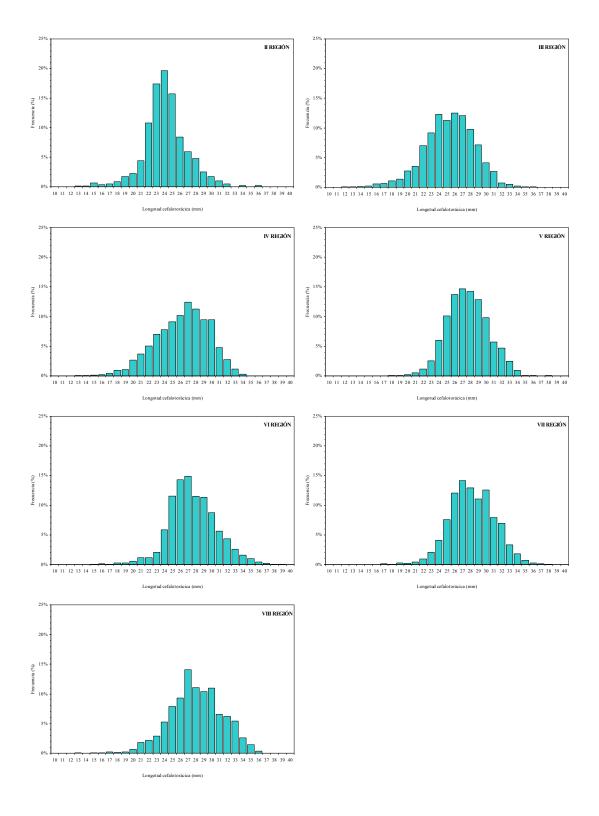


Fig. 20. Distribución de frecuencias de tamaño de hembras de camarón nailon (*H. reedi*), por región.

4.4.3. Relación longitud-peso

La relación talla-peso de camarón nailon se estimó, para cada foco, mediante Mínimos Cuadrados No Lineales, por lo tanto, la medida de bondad de ajuste se expresa como la suma de cuadrados residuales (SCR). Los detalles de la definición de los focos de abundancia se presentan más adelante en este documento. Los parámetros de la relación talla-peso para ambos sexos en conjunto por foco se entregan en la Tabla 11.

Tabla 11. Parámetros de la relación talla-peso de camarón nailon (*H. reedi*, ambos sexos) por foco y total. SCR = suma de cuadrados residuales.

Food		Parámo	etro	
Foco	a	b	SCR	n
1				
2	2,181 x 10 ⁻⁴	3,173	283,1	530
3				
4	3,205 x 10 ⁻⁵	3,759	267,8	399
5	1,410 x 10 ⁻⁴	3,276	58,2	339
6	4,783 x 10 ⁻⁴	2,937	160,0	340
7 8	2,748 x 10 ⁻⁴	3,096	351,2	563
9	1,302 x 10 ⁻⁴	3,306	725,0	1256
10 11	1,929 x 10 ⁻⁴	3,209	219,3	457
12	3,382 x 10 ⁻⁴	3,045	2356,4	3056
13	2,182 x 10 ⁻⁴	3,179	166,4	405
14	5,308 x 10 ⁻⁴	2,928	1485,3	1512
15	3,024 x 10 ⁻⁴	3,100	2023,0	1553
16	5,549 x 10 ⁻⁴	2,911	2375,6	2031
17	2,728 x 10 ⁻⁴	3,124	1640,7	1340
18	1,159 x 10 ⁻⁴	3,398	661,9	549
19	1,164 x 10 ⁻⁴	3,397	352,7	343
20	2,846 x 10 ⁻⁴	3,135	2462,8	1938
21	3,560 x 10 ⁻⁴	3,048	351,5	450
22	3,161 x 10 ⁻⁴	3,097	237,3	341
23	$2,666 \times 10^{-4}$	3,144	188,1	398
24	2,725 x 10 ⁻⁴	3,143	2367,3	1929
25	3,451 x 10 ⁻⁴	3,078	566,4	548
26	1,772 x 10 ⁻⁴	3,301	331,3	314

En la estimación de los parámetros de la relación talla peso, en el caso de algunos focos de abundancia, la insuficiencia de observaciones biológicas por bajo número de registros o rango de tamaños estrecho llevó a que se juntaran focos de abundancia contiguos y se estimara un conjunto de parámetros comunes a todos los focos agrupados.

4.5. Objetivo Específico 1

4.5.1. Identificación de focos de abundancia

Los límites de los focos de abundancia de camarón nailon o caladeros en el área de estudio, II a VIII Regiones, fueron determinados aplicando el "Método Transitivo" descrito en la Propuesta Metodológica. El sustento científico-técnico de la utilización de dicho enfoque se basa en que el diseño de muestreo (lances de pesca) traspasa los límites de distribución de la especie en estudio y son considerados todos los valores muestreales, incluidos los ceros. Se asumió también que la densidad poblacional disminuye sistemáticamente hacia los límites de distribución de la especie.

El área de estudio se dividió primero en dos macrozonas, una macrozona norte que incluye las Regiones II a IV, y una macrozona sur que consideró las Regiones V a VIII. En el análisis geoestadistico aplicado para la definición de los focos de abundancia de camarón nailon, se incluyó el 100% de los lances de pesca efectivamente realizados entre la II y VIII Regiones (n = 565) (Fig. 21). El análisis de la distribución espacial de los lances de pesca (tanto negativos como positivos) y el valor de la captura por unidad de área barrida (cpua, ton/km²) por latitud, mostró la presencia de 26 focos de abundancia o caladeros de camarón nailon entre la II y VIII Regiones (Tabla 12, Fig. 22).

Luego de identificados los focos de abundancia, al interior de éstos, se estableció una grilla de estimación aleatoriamente distribuida. El tamaño de malla de la grilla de estimación correspondió a 200 m. Dado que en ciertos casos, parte de los focos se encontraron dentro de las 5 millas náuticas de exclusión artesanal, y acorde a los Términos Básicos de Referencia, en la Tabla 12 se muestra el área de los focos de abundancia dentro y fuera de las 5 mn (ARPA).

Al respecto, cabe hacer notar que entre la II y VIII Regiones, poco más del 75% del área de distribución de los focos de abundancia de camarón nailon se encontró fuera del ARPA. En el caso de la macrozona norte, considerada ésta como las Regiones II a IV, 44,1% del área de distribución de camarón se encontró dentro del ARPA, mientras que en la macrozona sur, V a VIII Regiones, 99,2% del área de distribución de camarón nailon se encontró dentro del ARPA (Tabla 13).

Tabla 12. Límites latitudinales de los focos de abundancia de camarón nailon (*H. reedi*) y área (km²) correspondiente entre la V y VIII Regiones.

Caladara	Límites latit	udinales (°S)	Area
Caladero	Norte	Sur	(km ²)
1	25° 31' 01,3"	25° 32' 19,7"	7,008
2	25° 42' 17,6''	25° 44' 27,2''	23,007
3	25° 59' 26,5"	26° 06' 18,4"	21,741
4	26° 12' 11,5"	26° 33' 05,0"	57,241
5	26° 45' 25,9"	27° 02' 47,4''	50,496
6	27° 07' 22,4'' 27° 21' 04,3''	27° 16' 49,1''	38,359
7	27° 21' 04,3"	27° 36' 24,8"	80,618
8	27° 50' 07,4''	27° 59' 16,8"	17,947
9	28° 07' 31,4"	28° 53' 47,0"	227,684
10	29° 11' 27,2"	29° 20′ 46,7"	50,768
11	29° 26' 29,8"	29° 28' 51,2"	10,716
12	29° 33' 22,7''	30° 05' 17,9"	298,523
13	30° 06' 36,0"	30° 11' 18,2"	36,645
14	30° 11' 07,4"	30° 46′ 03,7"	166,535
15	30° 49' 48,0''	31° 36' 57,2"	246,709
16	31° 40' 31,8"	32° 39′ 42,5″	396,333
17	32° 48' 19,8''	33° 28' 26,8"	234,621
18	33° 31' 47,3"	33° 39' 05,4"	59,669
19	33° 44' 21,8"	33° 56' 26,5"	58,811
20	34° 03' 15,1"	34° 44' 54,6''	291,594
21	34° 49' 57,7"	35° 05' 51,7"	104,646
22	35° 13' 40,1"	35° 16' 59,9"	23,377
23	35° 22' 04,8"	35° 28' 01,9"	33,714
24	35° 35'15,0"	36° 05' 12,1"	410,840
25	36° 01'59,2"	36° 27' 29,2"	114,778
26	36° 29'09,6''	36° 43' 12,7"	65,597
Total			3.127,977

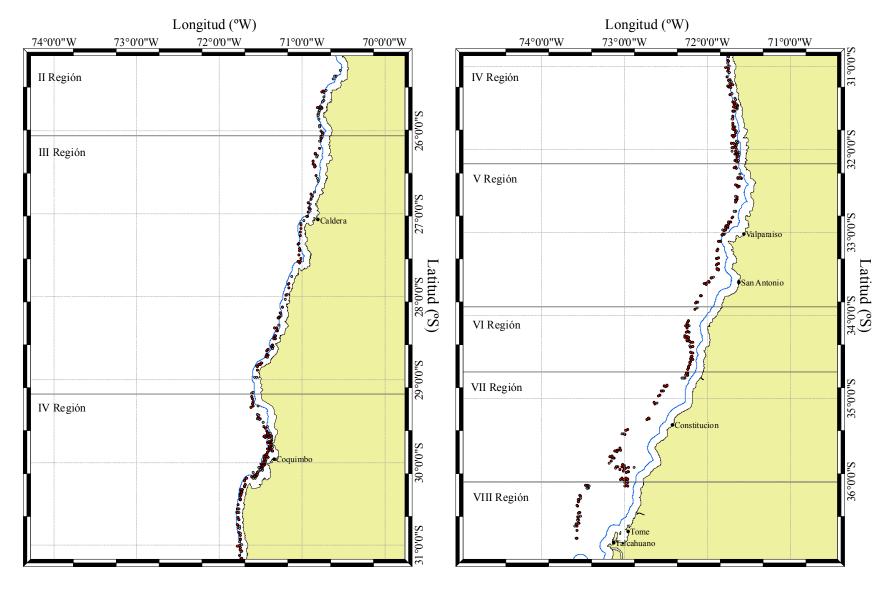


Fig. 21. Disposición espacial de los lances de pesca de camarón nailon entre la II y VIII regiones, año 2008. Puntos rojos = lances positivos para camarón; puntos grises = lances negativos.

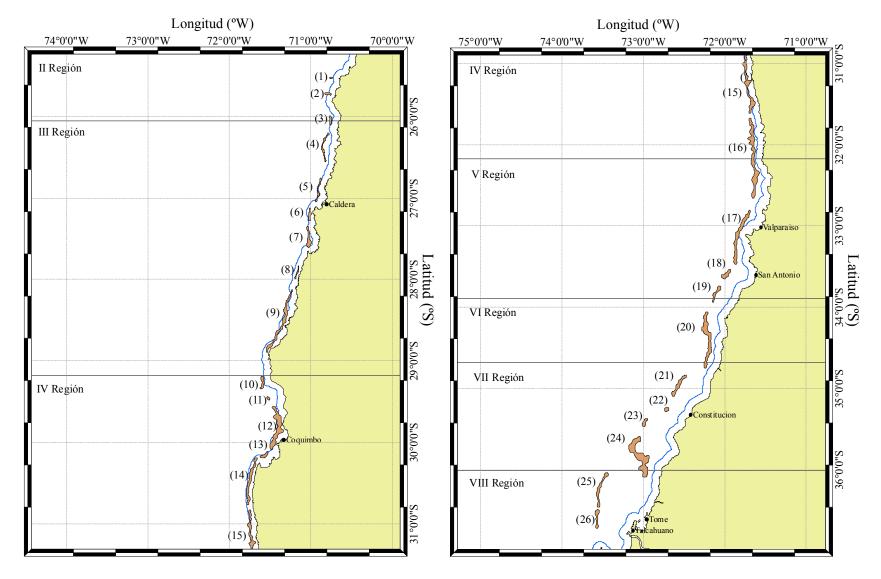


Fig. 22. Disposición espacial de los focos de abundancia de camarón nailon (*H. reedi*). La línea azul representa el límite del Area de Reserva de la Pesca Artesanal (ARPA).

Luego de identificados los focos de abundancia, al interior de éstos, se estableció una grilla de estimación aleatoriamente distribuida. El tamaño de malla de la grilla de estimación correspondió a 200 m. Dado que en ciertos casos, parte de los focos se encontraron dentro de las 5 millas náuticas de exclusión artesanal, y acorde a los Términos Básicos de Referencia, en la Tabla 13 se muestra el área de los focos de abundancia dentro y fuera de las 5 mn (ARPA).

Tabla 13. Fracción de área (km²) de los caladeros de camarón nailon (*H. reedi*) dentro y fuera de las 5 mn de exclusión artesanal.

Caladana	Dentr	0	Fuer	a	Total
Caladero	(km ²)	%	(km ²)	%	(km^2)
1		0,0	7,008	100,0	7,008
2	23,007	100,0		0,0	23,007
3		0,0	21,741	100,0	21,741
4		0,0	57,241	100,0	57,241
5	16,757	33,2	33,739	66,8	50,496
6	38,359	100,0		0,0	38,359
7	21,333	26,5	59,285	73,5	80,618
8	17,947	100,0		0,0	17,947
9	143,264	62,9	84,421	37,1	227,685
10		0,0	50,768	100,0	50,768
11		0,0	10,716	100,0	10,716
12	194,648	65,2	103,875	34,8	298,523
13	18,969	51,8	17,676	48,2	36,645
14	166,535	100,0		0,0	166,535
15	122,639	49,7	124,070	50,3	246,709
16		0,0	396,333	100,0	396,333
17	14,709	6,3	219,912	93,7	234,621
18		0,0	59,669	100,0	59,669
19		0,0	58,811	100,0	58,811
20		0,0	291,594	100,0	291,594
21		0,0	104,646	100,0	104,646
22		0,0	23,377	100,0	23,377
23		0,0	33,714	100,0	33,714
24		0,0	410,840	100,0	410,840
25		0,0	114,778	100,0	114,778
26		0,0	65,597	100,0	65,597
Total	778,167	24,9	2349,810	75,1	3127,977

4.5.2. Análisis estructural

El análisis de variogramas direccionales reveló la presencia de efecto anisotrópico de la distribución espacial de la densidad poblacional de camarón nailon en la macrozona norte en la dirección N-S, esto es, anisotropia geométrica asociada a la orientación de la costa. Mientras, en la macrozona sur, la distribución espacial de la densidad fue isotrópica.

El modelo de variograma teórico que mostró el mejor ajuste, mediante el procedimiento de mínimos cuadrados ponderados (Cressie, 1993), tanto en la macrozona norte como en la macrozona sur, fue el modelo esférico con rango r, igual a:

$$\gamma(h) = \begin{cases} 0, & h = 0 \\ C_0 + C\left(\frac{3}{2}\left(\frac{h}{r}\right)\right) - \frac{1}{2}\left(\frac{h}{r}\right)^3, & 0 < \|\mathbf{h}\| \le r \\ C_0 + C, & \|\mathbf{h}\| \ge r \end{cases}$$

donde C_0 es el efecto nugget que caracteriza la variabilidad de microescala, C es el valor asintótico o sill del variograma menos el nugget, y r es el rango del variograma, más allá del cual los datos ya no presentan correlación (Tabla 14, Fig. 23).

Tabla 14. Parámetros del variograma teórico según el modelo esférico para la macrozona norte y sur de camarón nailon (*H. reedi*). SCR: suma de cuadrados de los residuos, VNE: Varianza no explicada.

Parámetro	Macrozona			
rarameno	Norte	Sur		
Rango (Km)	9,069	15,787		
Sill	21,751	40,686		
Nugget	2,488	28,299		
SCR	220,911	2675,8		
VNE (%)	10,264	41,022		

Los parámetros del variograma teórico esférico seleccionado y del *kriging* (modelo de covariograma, y geometría de la grilla de interpolación) fueron utilizados para calcular las ponderaciones óptimas asignadas a cada estimación local de la densidad de camarón nailon. Una vez realizada la interpolación, sólo aquellos nodos de la grilla que se encontraban dentro de los polígonos de estimación (focos, caladeros) definidos previamente, fueron considerados en el mapeo de la densidad y posterior estimación de la densidad media y biomasa total.

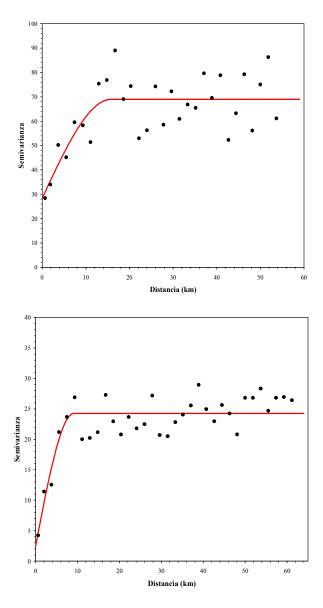


Fig. 23. Variograma experimental (puntos) y variograma teórico (modelo esférico, línea continua) de camarón nailon (*H. reedi*) en la macrozona norte (izquierda) y macrozona sur (derecha).

4.5.3. Análisis espacio-temporal de la distribución espacial de camarón nailon

4.5.3.1. Centro de gravedad e inercia

El centro de gravedad de la densidad poblacional de camarón nailon en el año 2008, para la macrozona norte de la pesquería (II – IV Regiones), se localizó en 29°53,3'S y 71°29'W, con

una inercia de 2,411°S en el plano latitudinal y 0,066°W en el plano longitudinal, mientras que en la macrozona sur (V – VIII Regiones), el centro de gravedad de la densidad se encontró en 34°31'41,5"S, con una inercia de 1,445°S en sentido latitudinal y 72°26'53,3"W, con una de 0,347°W en el plano longitudinal, respectivamente. El centro de gravedad para toda el área de estudio se encontró en los 32°01'27"S en el plano latitudinal, con una inercia de 7,314°S (Fig. 24) y 71°55'38"W en el plano longitudinal, con una inercia de 0,416°W.

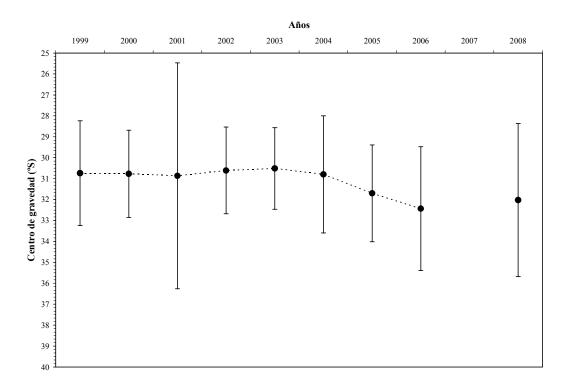


Fig. 24. Centro de gravedad (puntos negros) de la densidad poblacional (ton/Km²) de camarón nailon (*H. reedi*) en sentido latitudinal entre la II y VIII Regiones. Las barras verticales representan la inercia (*I*).

Al comparar con la disposición del centro de gravedad para años anteriores (1999 a 2006), se observa que existió un desplazamiento de éste hacia el sur en el área de estudio, entre los años 2004 - 2006 y eventualmente el 2007, (año en que no existe dato por no haberse realizado evaluación directa de la especie), situación atribuida a la mayor abundancia del recurso, que a su vez aumentó la ocupación del espacio disponible, debido a la explotación disminuida existente entre la V y VIII Regiones por el cierre de la pesquería por veda en dichas regiones, aunque se observa un leve desplazamiento hacia el norte en el año 2008 (Fig. 24).

4.5.3.2. Indice de Gini

El índice de Gini para la macrozona norte (II – IV Regiones) alcanzó a 0,166, mientras que en la macrozona sur (V-VIII Regiones) alcanzó a 0,257. Ambos valores indican que la densidad de camarón nailon en ambas macrozonas se encuentra agregado, con un mayor grado de concentración en la sur. En comparación con el año 2006, cuando el índice de Gini alcanzó a 0,328 y 0,259 para la macrozona norte y sur, respectivamente, los valores encontrados en ese año fueron menores, principalmente en la macrozona norte, y en menor grado en la sur, lo que indica un mayor grado de concentración de la densidad poblacional de camarón nailon en ambas unidades, como se desprende gráficamente de la observación de las curvas de Lorenz (Fig. 25).

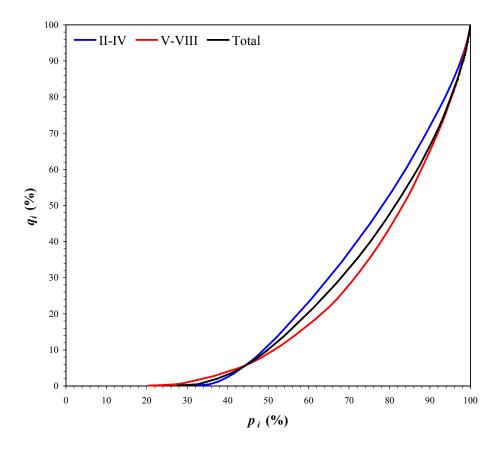


Fig. 25. Curvas de Lorenz para la distribución de la densidad poblacional (ton/Km²) de camarón nailon (*Heterocarpus reedi*) en la unidad de pesquería norte (II-IV Regiones, línea azul), unidad de pesquería sur (V-VIII Regiones, línea roja) y para toda en área de estudio (línea negra).

Adicionalmente, en el análisis de la evolución temporal del índice de Gini respecto de la biomasa de camarón nailon entre el año 2000 y 2008, exceptuando el año 2007, se observa que entre los años 2000 y 2004, el índice se mantuvo fluctuando alrededor de 0,410, no mostrando cambios notables respecto de las fluctuaciones de la biomasa. Sin embargo, a contar del año 2005, el índice de Gini, mostró una tendencia decreciente para toda el área de estudio, contraria a la tendencia de las biomasas, la que se mantiene hasta el año 2008 cuando alcanzó a 0,210 (Fig. 26). No ocurre lo mismo con la tendencia de la biomasa, la que muestra un cambio notable entre el 2006 y 2008, que dado que no existe dato el 2007 por no haberse realizado evaluación directa ese año, no se puede definir o explicar más allá.

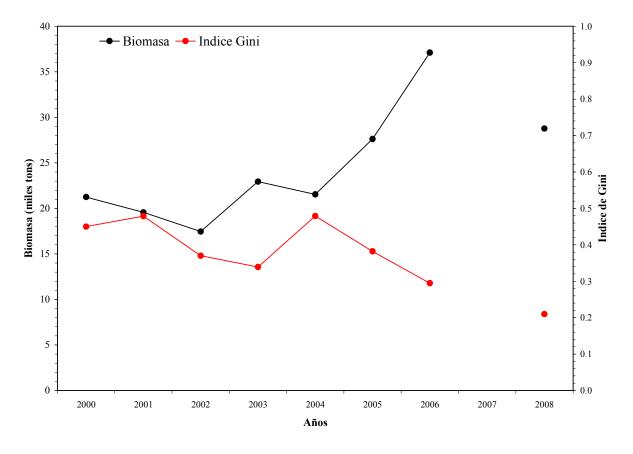


Fig. 26. Evolucion temporal del indice de Gini (línea roja) entre el año 2000 y 2008, para la distribución de la densidad poblacional (ton/km²) de camarón nailon (*H. reedi*), y la biomasa total (tons, línea negra) en toda en área de estudio.

4.6. Objetivo Específico 2

Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del langostino amarillo y langostino colorado en el área de estudio, por región y focos de abundancia, según corresponda.

4.6.1. Enfoque geoestadístico

La densidad poblacional promedio de camarón nailon se estimó como el promedio aritmético de los estimadores de densidad al interior de los focos de abundancia identificados mediante el método geoestadístico transitivo. Los valores de los estimadores puntuales de densidad (cpua) fueron generados mediante el método intrínseco aplicando kriging ordinario, con lo que se obtuvo 164.977 estimaciones puntuales de densidad local en área de estudio (II a VIII Región). Cabe hacer notar que, en la estimación de la densidad promedio por caladero, están incorporados los valores muestreales, siendo una de las propiedades del enfoque geoestadístico por el método intrínseco.

Al respecto, dado que los focos de abundancia previamente identificados debieron ser separados en aquella fracción que queda dentro del Area de Reserva de la Pesca Artesanal (ARPA), de acuerdo a las Bases Especiales del proyecto, la densidad poblacional promedio se estimó independientemente para cada una de las fracciones de área, es decir, FUERA o DENTRO del ARPA. Los valores de Biomasa (tons) y abundancia (miles de ejemplares) de camarón nailon por caladero, sexo, separada tanto dentro como fuera del ARPA y Región se entregan en el Anexo 6.

La densidad poblacional promedio de camarón nailon en el área de estudio fluctuó entre 0,713 tons/km² en la Sección 1 del Foco 3 (II Región, fuera del ARPA), y 17,509 tons/km² en el Foco 18 (Sección 4), también fuera del ARPA frente a la V Región, seguido de la Sección 5 del mismo Foco (fuera del ARPA), con una densidad promedio de 17,119 ton/km² (Tabla 15).

Tabla 15. Densidad poblacional (cpua, ton/km²) promedio, desviación estándar, tamaño de muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de camarón nailon (*H. reedi*) por fracción de área de los focos de abundancia entre la V y VIII Región.ARPA: 1 = DENTRO, 2 = FUERA.

Foco-	A DD A		cpua (ton/km²)			
Sección	ARPA	Prom.	D.E.	LI	LS	n
1.1	2	7,307	0,865	7,244	7,370	725
2.1	1	9,200	6,358	8,801	9,598	979
2.2	1	14,676	2,226	14,561	14,791	1.438
3.1	2	0,713	0,395	0,694	0,732	1.599
3.2	2	1,314	0,590	1,272	1,357	732
4.1	2	3,347	1,647	3,306	3,388	6.295
5.1	1	2,002	1,301	1,926	2,079	1.119
5.2	1	2,008	0,412	1,978	2,038	738
5.3	2	0,763	0,325	0,742	0,784	924
5.4	2	2,921	1,014	2,884	2,959	2.808
6.1	1	10,977	4,306	10,846	11,108	4.159
7.1	1	11,227	2,168	11,090	11,363	970
7.2	1	7,202	3,057	7,042	7,363	1.394
7.3	2	12,530	5,207	12,403	12,656	6.545
8.1	1	4,728	2,407	4,622	4,833	1.998
9.1	1	2,541	0,607	2,467	2,615	259
9.2	1	6,466	1,956	6,379	6,553	1.962
9.3	1	7,284	2,829	7,153	7,415	1.792
9.4	2	5,902	2,817	5,767	6,037	1.677
9.5	2	8,488	1,093	8,407	8,570	695
10.1	2	9,213	3,119	9,133	9,294	5.735
11.1	2	2,159	0,515	2,129	2,188	1.187
12.1	1	10,093	4,549	9,974	10,213	5.528
12.2	2	8,089	2,301	7,980	8,198	1.708
12.3	2	9,954	2,728	9,773	10,134	879
12.4	2	7,473	2,711	7,193	7,753	359
13.1	1	6,494	1,747	6,420	6,568	2.154
13.2	2	8,559	1,280	8,503	8,615	1.997
14.1	1	10,014	3,247	9,922	10,106	4.739
15.1	1	6,284	2,465	6,128	6,440	961
15.2	1	11,316	3,113	10,959	11,673	292
15.3	1	8,792	2,966	8,628	8,957	1.246
15.4	1	7,220	2,122	7,089	7,350	1.018
15.5	2	11,482	4,697	11,327	11,636	3.547
16.1	2	8,653	3,561	8,560	8,746	5.645
16.2	2	6,202	2,641	6,135	6,270	5.867
17.1	1	12,819	0,458	12,776	12,862	432
17.2	2	10,730	2,828	10,661	10,799	6.488
18.1	2	17,509	9,605	17,284	17,733	7.016
19.1	2	17,119	6,336	16,959	17,279	6.008
19.2	2	3,765	0,609	3,726	3,803	958
20.1	2	9,213	3,556	9,136	9,291	8.031
20.2	2	5,534	1,815	5,398	5,671	680
21.1	2	16,309	6,204	16,201	16,418	12.582
22.1	2	12,247	2,160	12,167	12,328	2.768
23.1	2	8,553	3,051	8,458	8,648	3.991

Tabla 15. Continuación.

Foco- Sección	ARPA	cpua (ton/km²)				
Sección	AIMA	Prom.	D.E.	LI	LS	n
24.1	2	9,250	4,235	9,172	9,328	11.271
24.2	2	7,683	1,346	7,607	7,759	1.205
25.1	2	6,536	3,523	6,477	6,594	13.999
26.1	2	10,571	2,574	10,515	10,628	7.878

Por región, la mayor densidad promedio de camarón nailon se encontró en la V Región, con una densidad media de 13,065 tons/km², seguido de la VII Región, que presentó una densidad media de 12,184 tons/km² (Tabla 16)

Tabla 16. Densidad poblacional (cpua, ton/km²) promedio, desviación estándar, tamaño de muestra (n) e intervalos de confianza (LI = límite inferior; LS = límite superior) de camarón nailon (*H. reedi*) por Región.

Región	cpua (ton/km²)						
Region	Prom.	D.E.	LI	LS	n		
2	7,709	6,460	0,003	21,001	4.741		
3	6,895	5,087	0,185	22,200	34.067		
4	8,980	3,825	0,581	48,593	36.995		
5	13,065	7,700	1,317	33,467	25.811		
6	8,633	3,763	2,576	15,999	8.989		
7	12,184	6,016	2,001	25,423	31.292		
8	7,973	3,667	1,402	18,164	23.082		

Consecuentemente, la biomasa total del stock de camarón nailon (*H. reedi*) en la plataforma y talud continental de las Regiones II a VIII estimada según el enfoque geoestadístico alcanzó a 28.772,2 toneladas (D.E. = 11.413,8 tons). El intervalo de confianza de la biomasa es entre 28.388,1 tons (límite inferior) y 29.156,3 tons (límite superior). En la Tabla 17 se presenta la biomasa del stock de camarón nailon, por caladero, destacando el Foco 24 con cerca de 13,0% de la biomasa total, seguido del Foco 16, con 10,2%, y luego del Foco 12, con 9,9% de la biomasa total del recurso objetivo en el área de estudio, respectivamente.

Tabla 17. Biomasa estimada (toneladas) de camarón nailon (*H. reedi*), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región.

Eaga	Biomasa (tons)			
Foco	Estimada	E.E.E.	LI	LS
1	51,2	32,5	48,8	53,6
2	285,3	106,6	279,3	291,3
3	19,6	100,7	13,9	25,3
4	191,6	265,2	185,0	198,2
5	114,0	234,0	102,3	125,7
6	421,1	177,7	415,7	426,5
7	931,6	373,5	919,2	944,0
8	84,9	83,2	81,3	88,5
9	1.503,9	1.055,0	1.448,8	1.559,0
10	467,7	235,2	461,6	473,8
11	23,1	49,7	20,3	25,9
12	2.854,8	1.383,2	2.802,1	2.907,5
13 14	274,5	169,8	267,2	281,8
14	1.667,7	771,6	1.645,7	1.689,7
15	2.388,3	1.143,1	2.332,9	2.443,7
16	2.935,0	1.447,9	2.897,5	2.972,5
17	2.548,2	635,4	2.529,9	2.566,5
18	1.044,7	161,6	1.040,9	1.048,5
19	898,9	159,3	894,0	903,8
20	2.604,0	789,7	2.583,5	2.624,5
21	1.706,7	283,4	1.701,7	1.711,7
22	286,3	63,3	283,9	288,7
23	288,4	91,3	285,6	291,2
24	3.737,1	1.112,6	3.712,4	3.761,8
25	750,1	310,8	745,0	755,2
26	693,5	177,6	689,6	697,4
Total	28.772,2	11.413,8	28.388,1	29.156,3

En la Tabla 18, se entrega la estimación de biomasa de camarón nailon por región, identificándose la biomasa contenida dentro o fuera del Area de Reserva para la Pesca Artesanal (ARPA). En este sentido, cabe hacer notar que 32,5% de la biomasa de camarón nailon se encontró en los focos o fracciones de focos de abundancia localizados en la IV Región, seguido de la VII Región (20,3%). La V Región aportó con 19,9% de la biomasa total de camarón nailon en el área y período de estudio.

Tabla 18. Biomasa estimada (toneladas) de camarón nailon (*H. reedi*) e intervalos de confianza (LI = límite inferior; LS = límite superior) por Región, fuera y dentro de la ARPA. ARPA: 1 = DENTRO, 2 = FUERA.

Dogića ADDA	Biomasa (tons)			
Región.ARPA	Estimada	LI	LS	
2.1	285,3	279,3	291,3	
2.2	61,9	56,1	67,7	
3.1	1.670,5	1.617,6	1.723,4	
3.2	1.585,5	1.541,3	1.629,7	
4.1	4.719,3	4.633,3	4.805,3	
4.2	4.640,4	4.556,6	4.724,2	
5.1	188,6	184,8	192,4	
5.2	5.524,2	5.488,4	5.560,0	
6.1	0,0	0,0	0,0	
6.2	2.510,2	2.492,9	2.527,5	
7.1	0,0	0,0	0,0	
7.2	5.832,9	5.799,6	5.866,2	
8.1	0,0	0,0	0,0	
8.2	1.753,4	1.738,2	1.768,6	
Total	28.772,2	28.388,1	29.156,3	

4.6.2. Método de la Distribución Delta-lognormal

Para el cálculo de la abundancia de camarón nailon mediante el estimador de la Distribución Delta, se determinó la densidad poblacional promedio para cada una de las macrozonas estudiadas. Al respecto, en la macrozona norte, la distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua]) se mostró fuertemente representada por el rango 2,0-3,0 ln(cpua). La estructura de tal distrución resultó aproximadamente normal, de la misma manera que en el caso de la macrozona sur (Fig. 27).

No obstante, la distribución de frecuencias del logaritmo de la captura por unidad de área en ambas macrozonas fue sesgada, de todas maneras se utilizó este método log-normal para la estimación de biomasa de camarón nailon en el área de estudio (II – VIII Regiones) sólo con fines comparativos.

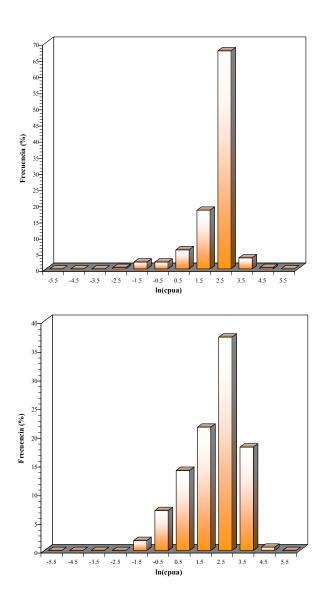


Fig. 27. Distribución de frecuencias del logaritmo de la captura por unidad de área (ln[cpua]) de camarón nailon (*H. reedi*) en la macrozona norte (izquierda) y macrozona sur (derecha).

El estimador de densidad media calculado mediante este método de la distribución Delta Lognormal alcanzó a 7,704 ton/km² (D.E.= 0,598 tons/km²), en la macrozona norte, y a 11,149 tons/km² en la macrozona sur (D.E. = 1,419 tons/km²), respectivamente. En la Tabla 19 se entregan los estimaciones de biomasa e intervalos de confianza respectivos, por foco de abundancia. Al respecto, la biomasa total estimada de camarón nailon alcanzó a 29.608,3 tons (D.E. = 3.184,0 tons) con intervalos de confianza de 21.618,0 tons (límite inferior) y 39.786,1 tons (límite superior).

Tabla 19. Biomasa estimada (toneladas) de camarón nailon (*H. reedi*), error estándar de la estimación (EEE, tons) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la II y VIII Región. Distribución Delta.

Foco	Biomasa (tons)				
	Estimada	E.E.E.	ĹI	LS	
1	54,0	4,2	45,6	73,7	
2 3	177,3	13,8	149,6	241,9	
3	167,5	13,0	141,4	228,6	
4	441,0	34,3	372,2	601,9	
5	389,0	30,2	328,3	531,0	
6	295,5	23,0	249,4	403,4	
7	621,1	48,2	524,2	847,8	
8	138,3	10,7	116,7	188,7	
9	1.754,1	136,2	1.480,4	2.394,3	
10	391,1	30,4	330,1	533,9	
11	82,6	6,4	69,7	112,7	
12	2.299,9	178,6	1.940,9	3.139,3	
13	282,3	21,9	238,3	385,4	
14	1.283,0	99,7	1.082,8	1.751,3	
15	1.900,7	147,6	1.604,1	2.594,4	
16	3.748,5	402,7	2.738,4	5.037,3	
17	2.615,8	332,9	1.713,3	3.478,3	
18	665,3	84,7	435,7	884,6	
19	655,7	83,4	429,5	871,9	
20	3.251,0	413,7	2.129,3	4.322,9	
21	1.166,7	148,5	764,2	1.551,4	
22	260,6	33,2	170,7	346,6	
23	375,9	47,8	246,2	499,8	
24	4.580,5	582,9	3.000,1	6.090,8	
25	1.279,7	162,9	838,2	1.701,6	
26	731,3	93,1	479,0	972,5	
Total	29.608,3	3.184,0	21.618,0	39.786,1	

4.6.3. Estimador de razón

El estimador de la densidad poblacional mediante el estimador de razón, calculado para toda el área de estudio, tal como en el caso del enfoque mediante la Distribución Delta, alcanzó a 8,915 ton/km² (D.E.= 10,551 ton/km²). La biomasa de camarón nailon en base a este método alcanzó a 14.253,6 tons, con intervalos de confianza de 12.508,8 tons como límite inferior y límite superior de 16.503,8 tons, respectivamente. La Tabla 20 entrega los estimaciones de biomasa e intervalos de confianza por foco de abundancia.

Tabla 20. Biomasa (tons) e intervalos de confianza inferior (LI, tons) y superior (LS, tons) de camarón nailon (*H. reedi*) entre la II y VIII Región, por foco.

Eggs	Biomasa (tons)			
Foco	Estimada	LI	LS	
1	49,3	45,4	54,3	
2	161,9	149,1	178,4	
3	153,0	140,9 371,0	168,6	
4	402,8	371,0	443,8	
5	355,3	327,3	391,5	
6	269,9	248,6	297,4	
7	567,3	522,5	625,1	
8	126,3	116,3	139,2	
9	1.602,2	1.475,6	1.765,4	
10	357,2	329,0	393,6	
11 12	75,4	69,5	83,1	
	2.100,6	1.934,7	2.314,6	
13	257,9	237,5	284,1	
14	1.171,9	1.079,3	1.291,2	
15	1.736,0	1.598,9	1.912,9	
16	3.167,8	2.839,5	3.591,1	
17	2.091,6	1.835,6	2.421,6	
18	531,9	466,8	615,9	
19	524,3	460,1	607,0	
20	2.599,4	2.281,3	3.009,7	
21	932,9	818,7	1.080,1	
22 23	208,4	182,9	241,3	
23	300,5	263,8	348,0	
24	3.662,5	3.214,2	4.240,5	
25	1.023,2	898,0	1.184,7	
26	584,8	513,2	677,1	
Total	25.014,3	22.419,7	28.360,1	

4.6.4. Microceldas de estimación geoestadística

El método de las celdas de integración o estimación geoestadística, permitió estimar una biomasa de camarón nailon que alcanzó a 28.321,8 tons, con intervalos de confianza de 27.529,5 tons, como límite inferior, y 29.114,1 tons, como límite superior, respectivamente. La Tabla 21 entrega los estimaciones de biomasa e intervalos de confianza por foco de abundancia.

Tabla 21. Biomasa estimada (toneladas) de camarón nailon (*H. reedi*) e intervalos de confianza (LI = límite inferior; LS = límite superior) por foco de abundancia entre la V y VIII Región. Microceldas de estimación geoestadística.

Бааа	Biomasa (tons)			
Foco	Estimada	LI	LS	
1	47,8	47,4	48,1	
2	271,1	270,0	272,2	
3	18,9 188,7	17,8	20,0	
4	188,7	185,3	192,1	
5	112,6	109,9	115,3	
6	406,0	403,9	408,1	
7	913,0	908,5	917,5	
8	83,5	82,5	84,5	
9	1483,4	1431,4	1535,5	
10	461,3	458,6	464,1	
11	22,3	21,8	22,8	
12	2814,6	2756,2	2872,9	
11 12 13	269,0	267,2	270,7	
14	1638,1	1602,2	1674,0	
15	2341,3	2289,5	2393,1	
16	2890,0	2761,1	3018,9	
17	2521,9	2419,7	2624,1	
18	1025,3	1019,1	1031,5	
19	886,4	880,0	892,8	
20	2573,4	2451,8	2695,0	
21	1686,9	1675,6	1698,2	
21 22	277,7	275,3	280,2	
23	279,2	275,7	282,8	
24	3695,7	3524,2	3867,2	
25	741,6	729,6	753,6	
26	672,0	665,3	678,8	
Total	28321,8	27529,5	29114,1	

4.6.5. Muestreo Estratificado

La estimación de la biomasa se realizó separadamente para cada una de las regiones políticas consideradas, sobre la base de la superficie de los estratos correspondientes a cada región. En aquellos estratos que estaban parcialmente en una región, la estimación se realizó considerando la parte proporcional del estrato que correspondía a cada región.

La estimación total de la biomasa se realizó sólo considerando las áreas asignadas a cada estrato sin integrar áreas entre caladeros. Este procedimiento se considera en genera conservador, y puede producir una subestimación cercana al 15% respecto de otros procedimientos de estimación utilizados en este y en proyectos.

Las Tablas siguientes muestran los resultados de la estimación por estrato (Tabla 22) y por región (Tabla 23), incorporando la superficie estimada inicialmente en km², la biomasa (Biom., tons), densidad (ton/km²) y una estimación de los límites de confianza del 95% por región. Las pequeñas diferencias en la estimación de la biomasa total por estratos y por regiones obedecen a que los promedios fueron obtenidos a partir agrupaciones de lances diferentes, los que al ser ponderados por los tamaños relativos de las regiones generan variaciones consideradas no significativas al estar largamente dentro de los intervalos de confianza respectivos.

Tabla 22. Biomasa de camarón por estrato y total (tons), área de los estratos (km²), cpua (tons/km²) e intervalos de confianza del 95% para el estimador de biomasa total.

Estrato	Área (km²)	Heterocarp	us reedi	Intervalos de Confianza		
	Area (KIII)	Cpua	Biom.	Lim. Infer.	Lim. Super.	
1	205,8	4,6	945,1	755,9	1.134,2	
2	1.296,5	4,6	5.976,1	5.657,6	6.294,7	
3	1.721,8	8,2	14.127,0	13.694,7	14.559,3	
4	1.660,1	9,1	15.168,7	14.551,7	15.785,7	
5	1.238,2	8,2	10.191,0	9.604,3	10.777,6	
•					•	
Área Estim.	6,122.4	BM. Estim.	46.407,9	45.383,7	47.432,1	

Tabla 23. Biomasa de camarón nailon por región y total (tons), área de las regiones (km²), cpua (tons/km²) e intervalos de confianza del 95% por región y para el estimador de biomasa total

Región	Área (km²)	Heterocarp	ous reedi	Intervalos de Confianza		
Kegion	Area (Kili)	Cpua	Biom.	Lim. Infer.	Lim. Super.	
2	319,0	3,0	951,4	754,5	1.148,3	
3	1.183,3	4,6	5.454,4	5.149,1	5.759,8	
4	2.215,7	8,0	17.721,6	17.235,5	18.207,7	
5	713,4	10,7	7.661,0	7.199,7	8.122,3	
6	452,7	8,4	3.810,7	3.709,9	3.911,6	
7	860,9	9,3	8.013,5	7.452,3	8.574,8	
8	377,3	6,4	2.411,0	2.120,4	2.701,6	

Área Estim. 6.122,4 BM. Estim. 46.023,7 45.234,8 46.812,6					
	Área Estim.	61774	46.023,7	45.234,8	46.812,6

4.6.6. Método alternativo de estimación del área de los focos de abundancia

Con el propósito de evaluar un método alternativo de estimación del área ocupada por el stock de camarón nailon en la evaluación directa de su biomasa, se probó la aplicación del método de interpolación de vecinos naturales.

Al respecto, este método produjo una reducción neta en la estimación del área de distribución del recurso de 32,76%, lo que en términos de la biomasa, utilizando los estimadores de densidad media por foco previamente estimados, significó una reducción de 34,9% (Tabla 24). Al respecto, cabe hacer notar que el método de vecinos naturales produce tanto subestimaciones como sobreestimaciones de las áreas de los focos de abundancia (Fig. 28), las que pueden resultar altamente significativas, por ejemplo, la subestimación que ocurre en el Foco 22 (-95,7%), o la sobreestimación del Foco 16 (+3,64%). En el caso del camarón nailon, la situación más frecuente observada fue de subestimación del área de los focos de abundancia (Tabla 24).

El mayor problema, sin embargo, con la estimación de área por el método de vecinos naturales es que éste no resuelve estimaciones para aquellos focos pequeños conformados por uno o dos lances, situación que ocurrió con los Focos 1 y 11 (Tabla 24).

Tabla 24. Estimación del área de los focos de abundancia de camarón nailon (*H. reedi*) por el enfoque geostadistico transitivo (G.T.) y el método de vecinos naturales (V.N.), diferencia (Dif., %) entre ambos estimadores, densidad poblacional promedio (cpua, ton/km²) por foco y estimaciones de biomasa (tons) para cada método de estimación de área.

E	Area	(km ²)	D:c (0/)	cpua	Biomas	a (tons)
Foco	G.T.	V.N.	Dif. (%)	(ton/km ²)	G.T.	V.N.
1	7,0			7,307	51,2	0,0
2	23,0	2,3	-90,00	12,458	286,6	28,7
3	21,7	6,9	-68,20	0,902	19,6	6,2
4	57,2	28,8	-49,65	3,347	191,6	96,3
5	50,5	37,9	-24,95	2,260	114,1	85,7
6	38,4	2,4	-93,75	10,977	421,1	26,6
7	80,6	33,9	-57,94	11,554	931,5	392,0
8	17,9	6,5	-63,69	4,728	84,9	30,7
9	227,7	129,40	-43,17	6,608	1.504,6	855,0
10	50,8	10,2	-79,92	9,213	467,7	94,2
11	10,7			2,159	23,1	0,0
12	298,5	224,5	-24,79	9,564	2.855,1	2.146,7
13	36,6	6,2	-83,06	7,487	274,4	46,7
14	166,5	93,8	-43,66	10,014	1.667,7	939,7
15	246,7	252,6	2,39	9,679	2.388,0	2.445,3
16	396,3	410,8	3,66	7,404	2.934,5	3.041,3
17	234,6	143,6	-38,79	10,860	2.548,1	1.560,0
18	59,7	14,0	-76,55	17,509	1.044,7	245,8
19	58,8	32,1	-45,41	15,283	898,8	490,8
20	291,6	192,8	-33,88	8,926	2.602,8	1.721,2
21	104,6	33,4	-68,07	16,309	1.706,7	545,3
22	23,4	1,0	-95,73	12,247	286,3	12,4
23	33,7	8,0	-76,26	8,553	288,4	68,6
24	410,8	348,3	-15,21	9,099	3.738,1	3.169,3
25	114,8	50,1	-56,36	6,536	750,1	327,6
26	65,6	33,5	-48,93	10,571	693,5	354,2
Total	3.127,7	2.103,0	-53,0		28.773,2	18.730,3

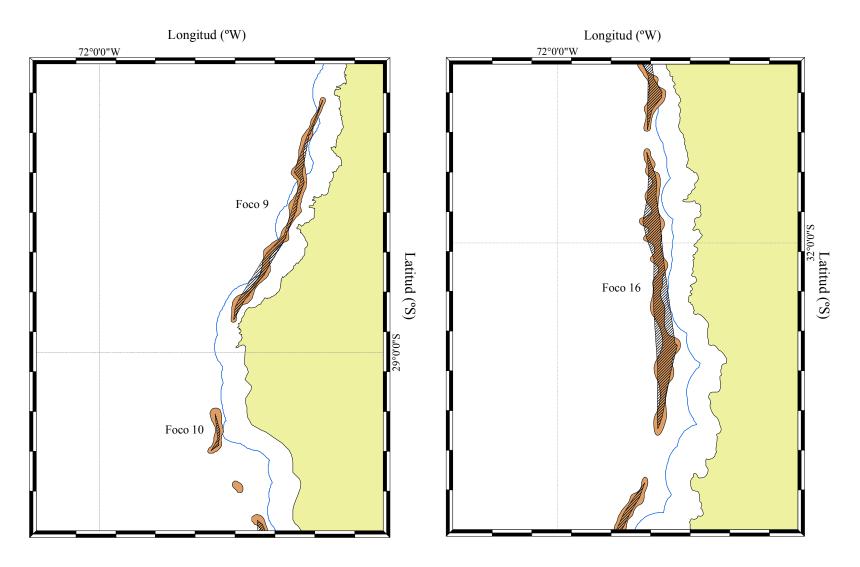


Fig. 28. Estimación del área de los focos de abundancia de camarón nailon (*H. reedi*) según el enfoque geoestadistico trasitivo (café liso) y el método de vecinos naturales (polígonos achurados). Izquierda: subestimación de los Focos 9 y 10. Derecha: sobreestimación del Foco 16.

4.7. Objetivo Específico Nº 3.

Determinar la condición reproductiva del camarón nailon y camarón nailon, en el área y período de estudio.

4.7.1. Condición reproductiva del camarón nailon

4.7.1.1. Estados de madurez embrionaria de las hembras ovíferas.

Durante el período de estudio se analizaron 7.842 hembras ovíferas de camarón nailon con huevos en distintos estados de desarrollo embrionario, sin embargo el 64,05% de las hembras portadoras se encontraba en la estado 4, con un escaso número de estados tempranos (1) e intermedio (2-3). Las hembras ovíferas analizadas, procedentes de las distintas zonas de pesca, se distribuyeron en los siguientes estados de desarrollo:

- Estado 1: 4 individuos equivalentes al 0,05% del total.

- Estado 2: 1.827 individuos equivalentes al 23,59% del total.

- Estado 3: 954 individuos equivalentes al 12,32% del total.

- Estado 4: 4.691 individuos equivalentes al 64,05% del total.

4.7.1.2. Distribución de hembras ovíferas por Región.

Al analizar la distribución de hembras ovíferas por Región, se observó que en todas las regiones, a excepción de la IV Región, el estado de desarrollo predominante era el Estado 4 (64,1%) (Tabla 25).

Tabla 25. Distribución por región de las hembras ovíferas de camarón nailon, según estado de desarrollo.

REGION	DATO	ESTADO 1	ESTADO 2	ESTADO 3	ESTADO 4	TOTAL
II	N				14	14
11	%	0,00%	0,00%	0,00%	100,00%	100,00%
III	N		51	123	260	434
111	%	0,00%	11,75%	28,34%	59,91%	100,00%
IV	N	4	1.635	354	878	2.871
1 V	%	0,14%	56,95%	12,33%	30,58%	100,00%
V	N		124	407	1.992	2.523
·	%	0,00%	4,91%	16,13%	78,95%	100,00%
VI	N		10	51	790	851
V I	%	0,00%	1,18%	5,99%	92,83%	100,00%
VII	N		6	15	762	783
V 11	%	0,00%	0,77%	1,92%	97,32%	100,00%
VIII	N		1	4	265	270
V 111	%	0,00%	0,37%	1,48%	98,15%	100,00%
Total N		4	1.827	954	4.961	7.746
Total %		0,05%	23,59%	12,32%	64,05%	100,00%

4.7.1.3. Distribución de la talla corporal de hembras ovíferas por estado de madurez embrionaria.

La longitud cefalotorácica de las hembras ovíferas fluctuó entre un mínimo de 12,4 mm y un máximo de 38,8 mm, determinándose para el total de ejemplares de cada estado de desarrollo, los rangos de talla corporal, talla promedio y su desviación estándar (Tabla 26).

Tabla 26. Características morfométricas de las hembras de camarón nailon, por estado de desarrollo de los huevos.

DATO	ESTADO 1	ESTADO 2	ESTADO 3	ESTADO 4	TOTAL
N	4	1.827	954	4.961	7.746
Prom. LC	27,78	27,91	28,34	28,71	28,48
D.E. LC	2,44	2,54	2,50	2,54	2,56
Mín LC	24,90	20,20	16,40	12,40	12,40
Máx LC	30,30	37,40	34,80	38,80	38,80

Se determinó que la talla promedio de hembras portadoras correspondió a 28,48 mm de LC (D.E. = 2,56 mm) con un mínimo y máximo de 12,4 y 38,8 mm, respectivamente (Fig. 29+). Sin embargo, la moda se ubicó entre los 27-28 mm de LC en todos los estados de desarrollo (Tabla 27).

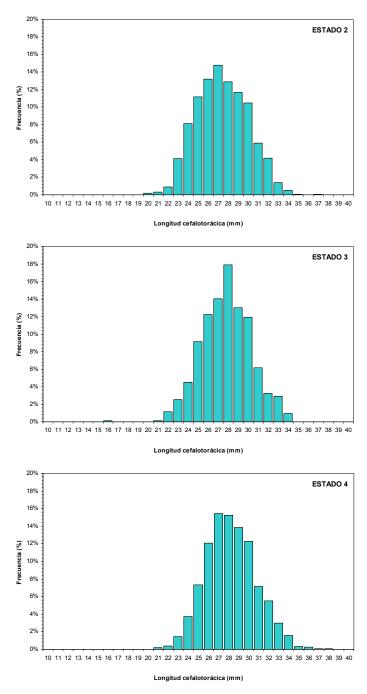


Fig. 29. Distribución de frecuencia de tamaños de las hembras ovíferas de camarón nailon por estado de desarrollo de los huevos.

Tabla 27. Distribución de frecuencia de tamaño y estados de madurez de camarón nailon.

MC		ESTADO 1	ES	STADO 2	ES	STADO 3	ES	STADO 4
12		0,00%		0,00%		0,00%	1	0,02%
13		0,00%		0,00%		0,00%		0,00%
14		0,00%		0,00%		0,00%		0,00%
15		0,00%		0,00%		0,00%		0,00%
16		0,00%		0,00%	1	0,10%		0,00%
17		0,00%		0,00%		0,00%	1	0,02%
18		0,00%		0,00%		0,00%	1	0,02%
19		0,00%		0,00%		0,00%	1	0,02%
20		0,00%	4	0,22%		0,00%	1	0,02%
21		0,00%	6	0,33%	1	0,10%	9	0,18%
22		0,00%	16	0,88%	11	1,15%	20	0,40%
23		0,00%	75	4,11%	24	2,52%	72	1,45%
24	1	25,00%	149	8,16%	43	4,51%	185	3,73%
25		0,00%	204	11,17%	87	9,12%	363	7,32%
26	1	25,00%	241	13,19%	117	12,26%	601	12,11%
27		0,00%	270	14,78%	134	14,05%	766	15,44%
28		0,00%	236	12,92%	171	17,92%	757	15,26%
29	1	25,00%	214	11,71%	124	13,00%	688	13,87%
30	1	25,00%	191	10,45%	114	11,95%	608	12,26%
31		0,00%	108	5,91%	59	6,18%	356	7,18%
32		0,00%	76	4,16%	31	3,25%	272	5,48%
33		0,00%	26	1,42%	28	2,94%	149	3,00%
34		0,00%	9	0,49%	9	0,94%	77	1,55%
35		0,00%	1	0,05%		0,00%	17	0,34%
36		0,00%		0,00%		0,00%	11	0,22%
37		0,00%	1	0,05%		0,00%	3	0,06%
38		0,00%		0,00%		0,00%	2	0,04%
39		0,00%		0,00%		0,00%		0,00%
40		0,00%		0,00%		0,00%		0,00%

4.7.1.4. Distribución geográfica global de las hembras ovíferas por estado de madurez embrionaria.

El conjunto de hembras ovíferas analizadas provino de las regiones II-VIII, donde se efectuaron lances de pesca, pero la cantidad de ejemplares procedentes de cada región geográfica fue muy diferente. Las diferentes regiones estuvieron bien representadas en las capturas, encontrándose el máximo entre la IV y V Regiones (Tabla 28). A continuación, se indica la distribución de las 7.746 hembras analizadas en cada región geográfica:

II Región : 14 ejemplares con el 0,18 % del total.

III Región : 508 ejemplares con el 6,48 % del total.

IV Región : 2.893 ejemplares con el 36,89 % del total.

V Región : 2.523 ejemplares con el 32,17% del total.

VI Región : 851 ejemplares con el 10,85% del total.

VII Región : 783 ejemplares con el 9,98% del total.

VIII Región : 270 ejemplares con el 3,44% del total.

Las hembras ovíferas por región, no sólo presentaron diferencias en el número de ejemplares analizados, sino en su estado de maduración (Tabla 28). Los resultados obtenidos en las distintas regiones indicaron que en todas se encontró la mayor proporción de hembras en Estado 4.

Tabla 28. Distribución del estado de madurez embrionario de hembras ovíferas de camarón nailon por Región.

REGION	DATO	ESTADO 1	ESTADO 2	ESTADO 3	ESTADO 4	TOTAL
	N				14	14
	%	0,00%	0,00%	0,00%	0,28%	0,18%
II	Prom LC (mm)				24,19	24,19
11	D.E. LC (mm)				1,75	1,75
	Mín LC (mm)				21,60	21,60
	Máx LC (mm)				27,50	27,50
	N		51	123	260	434
	%	0,00%	2,79%	12,89%	5,24%	5,60%
III	Prom LC (mm)		25,77	27,20	26,49	26,61
111	D.E. LC (mm)		1,48	2,38	2,56	2,44
	Mín LC (mm)		21,30	22,10	18,10	18,10
	Máx LC (mm)		29,80	33,80	35,50	35,50
	N	4	1635	354	878	2871
	%	100,00%	89,49%	37,11%	17,70%	37,06%
IV	Prom LC (mm)	27,78	27,83	27,64	28,23	27,93
1 7	D.E. LC (mm)	2,44	2,49	2,40	2,51	2,49
	Mín LC (mm)	24,90	20,20	16,40	12,40	12,40
	Máx LC (mm)	30,30	37,40	33,80	35,70	37,40
V	N		124	407	1992	2523
	%	0,00%	6,79%	42,66%	40,15%	32,57%
	Prom LC (mm)		29,54	29,04	28,62	28,73
	D.E. LC (mm)		2,50	2,25	2,31	2,32
	Mín LC (mm)		22,20	23,30	23,30	22,20
	Máx LC (mm)		34,80	34,80	38,80	38,80

Continuación...

	N		10	51	790	851
	%	0,00%	0,55%	5,35%	15,92%	10,99%
VI	Prom LC (mm)		30,14	29,78	29,25	29,29
V I	D.E. LC (mm)		2,67	2,67	2,44	2,46
	Mín LC (mm)		25,90	23,30	21,60	21,60
	Máx LC (mm)		34,60	34,80	37,60	37,60
	N		6	15	762	783
	%	0,00%	0,33%	1,57%	15,36%	10,11%
VII	Prom LC (mm)		28,88	30,51	29,66	29,67
V 11	D.E. LC (mm)		2,47	2,49	2,56	2,55
	Mín LC (mm)		26,20	26,10	23,40	23,40
	Máx LC (mm)		31,90	34,40	37,20	37,20
	N		1	4	265	270
VIII	%	0,00%	0,05%	0,42%	5,34%	3,49%
	Prom LC (mm)		33,30	28,25	29,13	29,13
	D.E. LC (mm)		0,00	2,78	2,55	2,56
	Mín LC (mm)		33,30	25,60	23,40	23,40
	Máx LC (mm)		33,30	30,70	35,50	35,50

4.7.1.5. Distribución batimétrica de las hembras ovíferas según su estado de madurez embrionaria

En el área de estudio, las hembras ovíferas examinadas se capturaron en los lances de pesca efectuados entre 150 y 500 m de profundidad (Tabla 29). Sin embargo, el mayor porcentaje de las hembras ovíferas (70,17%) se obtuvo en los lances efectuados entre 200 y 350 m, siendo escasos los especimenes capturados en los estratos más someros (150-200 m) y profundos (>350 m) con porcentajes menores al 10%.

Tabla 29. Distribución de frecuencia por rango de profundidad y estados de madurez de camarón nailon.

RANGO (m)	DATO	ESTADO 1	ESTADO 2	ESTADO 3	ESTADO 4	TOTAL
100	N		66	29	57	152
	%	0,00%	43,42%	19,08%	37,50%	100,00%
150	N		124	39	157	320
	%	0,00%	38,75%	12,19%	49,06%	100,00%
200	N	1	148	115	1127	1391
	%	0,07%	10,64%	8,27%	81,02%	100,00%
250	N		390	229	1187	1806
	%	0,00%	21,59%	12,68%	65,73%	100,00%
300	N		700	260	1091	2051
	%	0,00%	34,13%	12,68%	53,19%	100,00%
350	N	3	345	210	1020	1578
	%	0,19%	21,86%	13,31%	64,64%	100,00%
400	N		52	72	251	375
	%	0,00%	13,87%	19,20%	66,93%	100,00%
450	N		2		48	50
	%	0,00%	4,00%	0,00%	96,00%	100,00%
500	N				23	23
	%	0,00%	0,00%	0,00%	100,00%	100,00%
Total N		4	1827	954	4961	7746
Total %		0,05%	23,59%	12,32%	64,05%	100,00%

4.7.2. Proporción sexual

4.7.2.1. Proporción sexual por Región.

En la Tabla 30 se muestra la proporción sexual de los ejemplares por región y sexo. Las hembras predominan en la zona norte (II-V Regiones). El porcentaje de machos es mayor entre la VI y VIII Regiones. Para toda el área de estudio, la proporción sexual es cercana al 1:1.

Tabla 30. Proporción sexual (%) de los ejemplares de camarón nailon medidos en el muestreo de frecuencia de tallas por región.

REGION	MACHOS	HEMBRAS
II	33,14%	66,86%
III	43,13%	56,87%
IV	47,90%	52,10%
V	45,85%	54,15%
VI	53,51%	46,49%
VII	58,28%	41,72%
VIII	61,62%	38,38%
TOTAL	49,47%	50,53%

4.7.2.2. Proporción sexual a la talla por Región.

La proporción sexual a la talla del camarón nailon en la II Región muestra una marcada dominancia de machos en los rangos de talla pequeños (12-20 mm LC), predominando las hembras en las tallas grandes (22-36 mm LC), siendo superior al 60% en todos los casos (Tabla 31).

En la III Región, al igual que en la II Región, se observa un claro predominio de machos en los rangos de tamaño por bajo los 23 mm de LC, incrementando la proporción sexual de hembras a medida que aumenta el rango de tallas, llegando a ser casi de 100% sobre los 30 mm de LC (Tabla 31). En la IV Región, se observa un claro incremento del predominio de machos en los rangos de tamaño por bajo los 26 mm de LC, aumentando la proporción sexual de hembras a medida que se acrecienta el rango de tallas, llegando a ser casi de 100% sobre los 30 mm de LC (Tabla 31). En la V Región, se observa un claro predominio de machos en los rangos de tamaño por bajo los 26 mm de LC, aumentando la proporción sexual de hembras a medida que aumenta el rango de tallas, llegando a ser casi de 100% sobre los 32 mm de LC(Tabla 32).

Tabla 31. Proporción sexual a la talla en camarón nailon, entre la II y IV Regiones.

	II RE	GIÓN	III RI	EGIÓN	IV RE	GIÓN
RANGO	MC	HE	MC	HE	MC	HE
10					0,0%	100,0%
11			0,0%	100,0%	100,0%	0,0%
12	100,0%	0,0%	60,0%	40,0%	66,7%	33,3%
13	0,0%	100,0%	50,0%	50,0%	40,0%	60,0%
14	66,7%	33,3%	42,9%	57,1%	65,0%	35,0%
15	37,5%	62,5%	53,8%	46,2%	61,3%	38,7%
16	62,5%	37,5%	47,2%	52,8%	66,1%	33,9%
17	69,2%	30,8%	60,0%	40,0%	51,6%	48,4%
18	53,3%	46,7%	67,7%	32,3%	52,3%	47,7%
19	44,0%	56,0%	68,0%	32,0%	67,6%	32,4%
20	63,3%	36,7%	63,6%	36,4%	61,1%	38,9%
21	50,0%	50,0%	69,1%	30,9%	62,0%	38,0%
22	34,8%	65,2%	61,8%	38,2%	63,0%	37,0%
23	36,4%	63,6%	57,5%	42,5%	61,7%	38,3%
24	27,4%	72,6%	47,7%	52,3%	64,4%	35,6%
25	31,3%	68,7%	43,4%	56,6%	61,4%	38,6%
26	29,5%	70,5%	33,6%	66,4%	56,0%	44,0%
27	21,7%	78,3%	22,8%	77,2%	42,3%	57,7%
28	7,3%	92,7%	14,1%	85,9%	26,6%	73,4%
29	13,0%	87,0%	9,2%	90,8%	14,3%	85,7%
30	6,7%	93,3%	3,9%	96,1%	5,5%	94,5%
31	0,0%	100,0%	2,3%	97,7%	3,0%	97,0%
32	0,0%	100,0%	0,0%	100,0%	2,5%	97,5%
33			0,0%	100,0%	2,5%	97,5%
34	0,0%	100,0%	0,0%	100,0%	0,0%	100,0%
35			0,0%	100,0%	33,3%	66,7%
36	0,0%	100,0%	0,0%	100,0%	50,0%	50,0%
37			0,0%	100,0%	50,0%	50,0%
38					100,0%	0,0%
39						
40						

En la VI Región, al igual que en la V Región, se observa un claro predominio de machos en los rangos de tamaño por bajo los 27 mm de LC, incrementando la proporción sexual de hembras a medida que aumenta el rango de tallas, llegando a ser casi de 100% sobre los 33 mm de LC. En la VII Región se observa la misma situación de la VI Región. La proporción sexual muestra un completo predominio de las machos hasta los 28 mm LC, para luego predominar las hembras con proporciones mayores al 90% sobre los 31 mm de LC (Tabla 32). En la VIII Región, al igual que en todas las regiones, la proporción sexual muestra una clara dominancia de machos y hembras.

Los machos predominan en los rangos de tallas menores (15-29 mm LC). Desde los 30 mm LC hay un claro y creciente predominio de las hembras hasta los 37 mm LC (Tabla 32).

Tabla 32. Proporción sexual a la talla en camarón nailon, entre la V y VIII Regiones.

	V RE	GIÓN	VI RE	GIÓN	VII RE	EGIÓN	VIII RI	EGIÓN
RANGO	MC	HE	MC	HE	MC	HE	MC	HE
10								
11								
12								
13	0,0%	100,0%					0,0%	100,0%
14			100,0%	0,0%	100,0%	0,0%		
15	50,0%	50,0%	75,0%	25,0%	0,0%	100,0%	66,7%	33,3%
16			40,0%	60,0%	100,0%	0,0%	80,0%	20,0%
17	100,0%	0,0%	77,8%	22,2%	45,5%	54,5%	40,0%	60,0%
18	42,9%	57,1%	52,9%	47,1%	85,7%	14,3%	66,7%	33,3%
19	61,5%	38,5%	70,4%	29,6%	68,8%	31,3%	76,9%	23,1%
20	74,4%	25,6%	71,4%	28,6%	73,1%	26,9%	75,0%	25,0%
21	76,5%	23,5%	65,4%	34,6%	83,1%	16,9%	69,6%	30,4%
22	77,0%	23,0%	83,9%	16,1%	83,4%	16,6%	74,3%	25,7%
23	76,0%	24,0%	85,8%	14,2%	85,2%	14,8%	79,8%	20,2%
24	67,5%	32,5%	76,0%	24,0%	83,4%	16,6%	73,7%	26,3%
25	62,5%	37,5%	65,0%	35,0%	78,4%	21,6%	74,5%	25,5%
26	54,4%	45,6%	55,6%	44,4%	66,8%	33,2%	72,2%	27,8%
27	45,7%	54,3%	52,1%	47,9%	59,1%	40,9%	65,9%	34,1%
28	34,2%	65,8%	40,3%	59,7%	52,1%	47,9%	64,0%	36,0%
29	19,9%	80,1%	27,6%	72,4%	38,7%	61,3%	55,3%	44,7%
30	11,5%	88,5%	24,2%	75,8%	20,3%	79,7%	41,2%	58,8%
31	5,8%	94,2%	21,8%	78,2%	10,6%	89,4%	29,6%	70,4%
32	1,3%	98,7%	8,5%	91,5%	5,2%	94,8%	19,4%	80,6%
33	1,7%	98,3%	3,0%	97,0%	1,7%	98,3%	12,0%	88,0%
34	0,0%	100,0%	0,0%	100,0%	3,1%	96,9%	5,4%	94,6%
35	0,0%	100,0%	3,8%	96,2%	0,0%	100,0%	9,5%	90,5%
36	0,0%	100,0%	0,0%	100,0%	9,1%	90,9%	16,7%	83,3%
37	0,0%	100,0%	0,0%	100,0%	0,0%	100,0%	100,0%	0,0%
38	0,0%	100,0%	0,0%	100,0%	0,0%	100,0%		
39			0,0%	100,0%	100,0%	0,0%		
40								

4.7.2.3. Proporción sexual por foco de abundancia.

En la proporción sexual de camarón nailon estimada por foco de abundancia se aprecia un claro predominio de los hembras en los focos 1 al 19 del área de estudio, con la excepción de los focos 4 al 6 y 14-15; en los focos 6 y 17 se observa una proporción cercana al 50%. Los machos predominan desde el foco 20 al sur, encontrando la mayor fracción en el foco 22 con una propoción superior al 80% (Fig. 30).

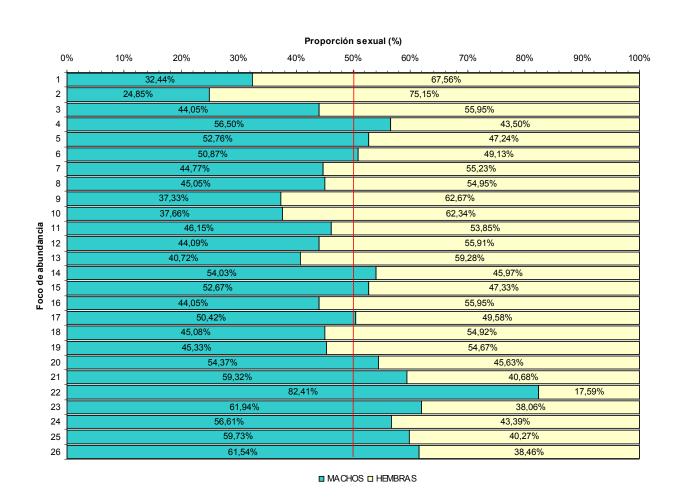


Fig. 30. Proporción sexual de camarón nailon, por foco de abundancia.

4.8. Objetivo Específico Nº 4.

4.8.1. Descripción de la abundancia de la fauna acompañante

4.8.1.1. Composición específica general de la fauna acompañante

La fauna acompañante estuvo compuesta por 37 taxa, de los cuales 23 fueron peces, 10 crustáceos, 3 moluscos (cefalópodos) y 1 mixinoídeo (Tabla 33). El 98,7% de la fauna acompañante estuvo compuesta sólo por 9 especies, destacando el lenguado de ojos grandes (*Hippoglossina macrops*), la merluza común (*Merluccius gayi*), el langostino colorado (*Pleuroncodes monodon*) y el langostino amarillo (*Cervimunida johni*); estas dos especies de peces aportan conjuntamente con el 9,3% respecto de la captura total, incluida la especie objetivo (camarón nailon *Heterocarpus reedi*); en cambio, las dos especies de langostinos contribuyeron con el 54,8%. El resto de la fauna acompañante aporta con el 5,4% en peso de la captura total, incluida la especie objetivo.

4.8.1.2. Distribución de la fauna acompañante en sentido latitudinal

Regionalmente la fauna acompañante exhibe un patrón en el que 4 a 8 especies constituyen entre 97% y 99% del peso. Las especies que conforman esta fracción de la fauna acompañante son las mismas en todas las Regiones y corresponden a los peces *H. macrops*, *M. gayi* y *Nezumia pulchella*; a los crustáceos *P. monodon* y *C. johni*; y a la jibia *Dosidicus gigas*. La particularidad en cada Región estuvo dada por el orden de importancia en peso de estas especies (Tabla 34).

Tabla 33. Listado de las especies que conforman la fauna acompañante en las capturas de camarón nailon. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: 0.0 = <0.05.

Nombre vernacular	Nombre científico	Acrónimo	CPUE total (ton/km²)	IRRO (%)	IRFA (%)	Lances Positivos (%)
Langostino amarillo	Cervimunida johni	Cervjoh	3085,5	28,3	40,7	41,8
Langostino colorado	Pleuroncodes monodon	Pleumon	2888,9	26,5	38,1	23,3
Merluza común	Merluccius gayi	Merlgay	539,0	4,9	7,1	77,7
Lenguado de ojos grandes	Hippoglossina macrops	Нірртас	479,1	4,4	6,3	72,9
Besugo	Epigonus crassicaudus	Epigcra	151,9	1,4	2,0	34,3
Pejerrata	Nezumia pulchella	Nezupul	138,7	1,3	1,8	30,9
Jibia	Dossidicus gigas	Dosigig	89,1	0,8	1,2	8,2
Raya volantín	Dipturus flavirostris	Diptfla	56,0	0,5	0,7	15,5
Jaiba limón	Cancer porteri	Cancpor	50,0	0,5	0,7	34,3
Jaiba paco	Mursia gaudichaudii	Mursgau	19,9	0,2	0,3	50,6
Torpedo	Discopyge tschudii	Disctsc	15,4	0,1	0,2	1,8
Tiburón	Centroscymnus crepidater	Centcre	12,7	0,1	0,2	29,1
Tiburón gato	Aculeola nigra	Aculnig	11,3	0,1	0,1	1,8
Congrio negro	Genypterus maculatus	Genymac	10,2	0,1	0,1	5,0
Raya chica	Bathyraja multispinis	Bathmul	5,4	0,0	0,1	8,0
Tollo de profundidad	Centroscyllium nigrum	Centnig	5,0	0,0	0,1	3,6
Pulpo	Opisthoteuthis sp.	Opisthoteu	4,3	0,0	0,1	16,5
Jaiba puñete	Hepatus chilensis	Hepachi	4,0	0,0	0,1	2,6
Pejerrata	Caelorinchus aconcagua	Coelaco	2,8	0,0	0,0	5,2
Jaiba mochilera	Lophorochinia parabranchia	Lophpar	1,3	0,0	0,0	6,2
Pulpo		Octopodidae	0,8	0,0	0,0	4,6
Gamba	Haliporoides diomedeae	Halidio	0,8	0,0	0,0	3,6
Lamprea negra	Eptatretus polytrema	Eptapol	0,7	0,0	0,0	7,4
Congrio colorado	Genypterus chilensis	Genychi	0,6	0,0	0,0	1,0
Pejerrata	Caelorinchus chilensis	Coelchi	0,6	0,0	0,0	0,2
Pateador	Pterygosquilla armata	Stomatop	0,5	0,0	0,0	2,2
Tiburón	Halaelurus canescens	Halacan	0,4	0,0	0,0	1,0
Pez de profundidad	Xenomystax atrius	Xenoatr	0,3	0,0	0,0	1,6
Cabrilla	Sebastes oculatus	Sebaocu	0,3	0,0	0,0	0,4
Raya	Psammobatis scobina	Psamsco	0,2	0,0	0,0	0,8
Tollo narigón	Apristurus nasutus	Aprinas	0,2	0,0	0,0	1,0
Anguila	Ophichthus pacifici	 Ophipac	0,2	0,0	0,0	2,8
Pejerrata plomo	Trachyrinchus villegai	Tracvil	0,1	0,0	0,0	1,6
Blanquillo	Prolatilus jugularis	Proljug	0,1	0,0	0,0	0,2
Centolla falsa	Libidoclaea granaria	Libigra	0,1	0,0	0,0	1,4
Langosta enana	Projasus bahamondei	Projbah	0,1	0,0	0,0	0,4
Raya espinosa	Dipturus trachyderma	Dipttra	0,0	0,0	0,0	0,2

Tabla 34. Listado de las especies que conforman la fauna acompañante en las capturas de camarón nailon, ordenados por región. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: 0.0 = <0.05

Región	Acrónimo	Total lances	Lances positivos (%)	CPUA Total (ton/km²)	IRFA (%)	F. acompañante, CPUA Total (ton/km²)	IRRO (%)	Heteree
II	Pleumon	25	76,0	389,1	78,5	495,5	66,9	85,9
	Нірртас		60,0	40,8	8,2		7,0	
	Merlgay		76,0	29,9	6,0		5,1	
	Cervjoh		28,0	14,9	3,0		2,6	
	Dosigig		12,0	8,7	1,8		1,5	
	Epigcra		28,0	4,1	0,8		0,7	
	Centnig		8,0	2,6	0,5		0,4	
	Nezupul		28,0	2,0	0,4		0,3	
	Centcre		56,0	0,7	0,1		0,1	
	Genymac		4,0	0,7	0,1		0,1	
	Mursgau		48,0	0,6	0,1		0,1	
	Cancpor		36,0	0,3	0,1		0,1	
	Lophpar		40,0	0,3	0,1		0,0	
	Bathmul		12,0	0,2	0,0		0,0	
	Octopodidae		12,0	0,2	0,0		0,0	
	Diptfla		16,0	0,2	0,0		0,0	
	Coelaco		12,0	0,1	0,0		0,0	
	Opisthoteu		12,0	0,1	0,0		0,0	
	Tracvil		8,0	0,0	0,0		0,0	
	Xenoatr		4,0	0,0	0,0		0,0	
	Ophipac		4,0	0,0	0,0		0,0	
	Eptapol		4,0	0,0	0,0		0,0	
III	Pleumon	85	42,4	1103,7	45,6	2422,0	42,3	188,0
	Cervjoh		63,5	1095,3	45,2	,	42,0	,
	Нірртас		69,4	101,0	4,2		3,9	
	Merlgay		88,2	86,7	3,6		3,3	
	Dosigig		7,1	11,2	0,5		0,4	
	Nezupul		35,3	8,7	0,4		0,3	
	Epigcra		29,4	7,4	0,3		0,3	
	Centcre		49,4	2,1	0,1		0,1	
	Bathmul		8,2	1,9	0,1		0,1	
	Mursgau		23,5	0,7	0,0		0,0	
	Cancpor		20,0	0,5	0,0		0,0	
	Lophpar		14,1	0,5	0,0		0,0	
	Genychi		4,7	0,4	0,0		0,0	
	Genymac		2,4	0,3	0,0		0,0	
	Octopodidae		11,8	0,3	0,0		0,0	
	Diptfla		3,5	0,2	0,0		0,0	
	Xenoatr		8,2	0,2	0,0		0,0	
	Opisthoteu		11,8	0,2	0,0		0,0	
	Centnig		4,7	0,1	0,0		0,0	
	Disctsc		1,2	0,1	0,0		0,0	
	Hepachi		1,2	0,1	0,0		0,0	
	Tracvil		4,7	0,1	0,0		0,0	
	Halidio		2,4	0,1	0,0		0,0	

	Ophipac		2,4	0,0	0,0		0,0	
	Dipttra		1,2	0,0	0,0		0,0	
	Eptapol		3,5	0,0	0,0		0,0	
	Stomatop		1,2	0,0	0,0		0,0	
	Aprinas		1,2	0,0	0,0		0,0	
	Coelaco	200	1,2	0,0	0,0	2005.5	0,0	1072.2
IV	Cervjoh	200	54,5	1612,2	57,5	2805,5	41,6	1072,2
	Pleumon		23,0	462,0	16,5		11,9	
	Merlgay		91,0	275,4	9,8		7,1	
	Нірртас		86,5	194,3	6,9		5,0	
	Epigcra		30,5	80,3	2,9		2,1	
	Nezupul		17,0	57,4	2,0		1,5	
	Dosigig		9,0	38,6	1,4		1,0	
	Diptfla		7,5	18,4	0,7		0,5	
	Mursgau		79,5	14,0	0,5		0,4	
	Disctsc		3,0	12,9	0,5		0,3	
	Aculnig		4,5	11,3	0,4		0,3	
	Cancpor		58,5	6,6	0,2		0,2	
	Centcre		14,0	6,0	0,2		0,2	
	Hepachi		4,5	3,8	0,1		0,1	
	Opisthoteu		15,0	3,2	0,1		0,1	
	Coelaco		11,0	2,7	0,1		0,1	
	Centnig Bathmul		5,0	2,0	0,1		0,1	
			7,5	1,4	0,0		0,0	
	Coelchi		0,5	0,6	0,0		0,0	
	Genymac		2,0	0,6	0,0		0,0	
	Halacan		2,5	0,4	$_{0,0}^{0,0}$		0,0	
	Stomatop		4,0 0,5	0,4 0,2	0,0		0,0	
	Genychi Psamsco		2,0	0,2			$0,0 \\ 0,0$	
	Octopodidae		3,0	0,2	$_{0,0}^{0,0}$		0,0	
	•				0,0			
	Proljug Halidio		0,5 1,0	0,1	0,0		$0,0 \\ 0,0$	
	Eptapol		3,0	0,1 0,1	0,0		0,0	
	Ophipac		5,5	0,1	0,0		0,0	
			2,5	0,1	0,0		0,0	
	Libigra Tracvil		1,0	$0,1 \\ 0,0$	0,0		0,0	
	Aprinas		0,5	0,0	0,0		0,0	
	Aprinas Lophpar		0,5	0,0	0,0		0,0	
V	Нірртас	48	77,1	47,2	28,1	168,1	8,1	413,2
V	Merlgay	40	70,8	36,9	22,0	100,1	6,4	413,2
	Cervjoh		18,8	36,5	21,7		6,3	
	Nezupul		47,9	24,3	14,5		4,2	
	Epigcra		52,1	10,2	6,1		1,8	
	Dosigig		2,1	5,1	3,0		0,9	
	Diptfla		20,8	4,0	2,4		0,7	
	Mursgau		41,7	1,1	0,7		0,7	
	Bathmul		10,4	0,6	0,4		0,1	
	Pleumon		4,2	0,6	0,3		0,1	
	Centcre		29,2	0,6	0,3		0,1	
	Opisthoteu		35,4	0,3	0,2		0,0	
	Cancpor		14,6	0,2	0,1		0,0	
	Halidio		8,3	0,1	0,1		0,0	
	Hepachi		4,2	0,1	0,1		0,0	
	Aprinas		4,2	0,1	0,1		0,0	
	Projbah		4,2	0,1	0,0		0,0	
	-		•	•	•		-	

	Eptapol Lophpar		6,3 4,2	0,1 0,0	0,0 0,0		0,0 0,0	
	Stomatop		2,1	0,0	0,0		0,0	
	Libigra		2,1	0,0	0,0		0,0	
VI	Merlgay	40	52,5	21,5	27,0	79,5	3,2	596,1
	Diptfla		42,5	13,1	16,5	,	1,9	,
	Нірртас		60,0	12,3	15,5		1,8	
	Cervjoh		30,0	10,2	12,9		1,5	
	Dosigig		12,5	9,7	12,2		1,4	
	Nezupul		62,5	8,4	10,5		1,2	
	Epigcra		42,5	2,0	2,6		0,3	
	Centcre		37,5	0,7	0,8		0,1	
	Bathmul		10,0	0,5	0,7		0,1	
	Centnig		5,0	0,3	0,4		0,0	
	Halidio		12,5	0,2	0,3		0,0	
	Mursgau		10,0	0,2	0,2		0,0	
	Opisthoteu		20,0	0,2	0,2		0,0	
	Aprinas		2,5	0,1	0,1		0,0	
	Pleumon		2,5	0,1	0,1		0,0	
	Cancpor		5,0	0,0	0,1		0,0	
	Eptapol Lophpar		7,5 2,5	0,0 0,0	$0,0 \\ 0,0$		$0,0 \\ 0,0$	
VII	Pleumon	73	17,8	832,1	60,6	1372,9	39,9	711,1
V 11	Cervjoh	13	15,1	244,4	17,8	1372,9	11,7	/11,1
	Merlgay		61,6	78,0	5,7		3,7	
	Hippmac		63,0	68,7	5,0		3,3	
	Epigcra		43,8	47,3	3,4		2,3	
	Cancpor		20,5	42,1	3,1		2,0	
	Nezupul		39,7	23,2	1,7		1,1	
	Diptfla		30,1	14,6	1,1		0,7	
	Dosigig		6,8	11,1	0,8		0,5	
	Genymac		12,3	2,7	0,2		0,1	
	Disctsc		1,4	2,4	0,2		0,1	
	Mursgau		37,0	2,1	0,2		0,1	
	Centcre		31,5	1,9	0,1		0,1	
	Bathmul		6,8	0,6	0,0		0,0	
	Eptapol		24,7	0,3	0,0		0,0	
	Sebaocu		2,7	0,3	0,0		0,0	
	Opisthoteu		12,3	0,3	0,0		0,0	
	Octopodidae Halidio		5,5 4,1	0,2 0,2	$0,0 \\ 0,0$		$0,0 \\ 0,0$	
	Lophpar		4,1	0,2	0,0		0,0	
	Libigra		1,4	0,0	0,0		0,0	
	Stomatop		1,4	0,0	0,0		0,0	
VIII	Pleumon	31	3,2	101,4	43,5	233,1	21,1	247,5
	Cervjoh	• •	25,8	71,8	30,8		14,9	
	Нірртас		38,7	14,8	6,4		3,1	
	Nezupul		22,6	14,7	6,3		3,1	
	Merlgay		45,2	10,6	4,5		2,2	
	Genymac		29,0	5,9	2,5		1,2	
	Diptfla		22,6	5,6	2,4		1,2	
	Dosigig		9,7	4,7	2,0		1,0	
	Mursgau		38,7	1,2	0,5		0,2	
	Centcre		32,3	0,8	0,3		0,2	
	Epigcra		16,1	0,6	0,2		0,1	
	Lophpar		6,5	0,3	0,1		0,1	

Cancpor	16,1	0,2	0,1	0,0
Bathmul	3,2	0,2	0,1	0,0
Eptapol	9,7	0,1	0,0	0,0
Opisthoteu	19,4	0,1	0,0	0,0
Halidio	6,5	0,1	0,0	0,0

4.8.1.3. Distribución de la fauna acompañante en sentido batimétrico

Batimétricamente, se observa también el patrón general de distribución de la fauna acompañante (en peso), la que está compuesta principalmente por 4 a 7 especies que aportan entre 91% y 98% del peso total cuando no se considera la especie objetivo en este recuento. Además, *P. monodon* y *C. johni* son las especies más importantes de la fauna acompañante entre 100 y 399 m de profundidad (Tabla 35), acompañadas por *M. gayi* y *H. macrops*. Esto cambia en el estrato de profundidad de 400 a 500 metros, siendo las principales especies de la fauna acompañante *H. macrops* y *M. gayi*, seguidas de por *Epigonus crassicaudus*, *D. gigas* y *N. pulchella*

Tabla 35. Fauna acompañante en las capturas de camarón nailon, ordenados por estratos de profundidad. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: 0.0 = <0.05

Prof. (m)	Acrónimo	Total lances	Lances positivos (%)	CPUA total (ton/km²)	IRFA (%)	F. acompañante, CPUA Total (ton/km²)	IRRO (%)	Heteree
100 - 199.9	Pleumon	48	45,8	930,6	71,2	1306,5	64,5	136,3
	Cervjoh		45,8	286,6	21,9		19,9	
	Merlgay		64,6	37,2	2,8		2,6	
	Нірртас		64,6	31,8	2,4		2,2	
	Nezupul		20,8	8,1	0,6		0,6	
	Dosigig		4,2	4,0	0,3		0,3	
	Epigcra		14,6	3,6	0,3		0,2	
	Mursgau		47,9	1,3	0,1		0,1	
	Disctsc		2,1	0,9	0,1		0,1	
	Diptfla		4,2	0,6	0,0		0,0	
	Genymac		4,2	0,6	0,0		0,0	
	Cancpor		31,3	0,6	0,0		0,0	
	Centcre		10,4	0,5	0,0		0,0	
	Coelaco		4,2	0,1	0,0		0,0	
	Eptapol		6,3	0,1	0,0		0,0	
	Opisthoteu		2,1	0,0	0,0		0,0	
	Нерасhі		2,1	0,0	0,0		0,0	
	Psamsco		2,1	0,0	0,0		0,0	
	Tracvil		2,1	0,0	0,0		0,0	
	Halacan		2,1	0,0	0,0		0,0	

200 200 0	C:-1	212	54.2	10457	52.7	2502.4	26.6	1520.4
200 - 299.9	Cervjoh	212	54,2	1845,7	52,7	3502,4	36,6	1539,4
	Pleumon		21,7	1053,3	30,1		20,9	
	Merlgay		82,1	215,6	6,2		4,3	
	Hippmac		76,4	170,0	4,9		3,4	
	Epigcra		28,3	57,9	1,7		1,1	
	Cancpor		31,6	44,7	1,3		0,9	
	Nezupul		32,1	41,8	1,2		0,8	
	Diptfla		17,5	24,7	0,7		0,5	
	Dosigig		6,6	22,4	0,6		0,4	
	Mursgau		46,7	8,3	0,2		0,2	
	Genymac		6,1	6,6	0,2		0,1	
	Centcre		24,5	2,9	0,1		0,1	
	Bathmul		6,1	2,4	0,1		0,0	
	Disctsc		0,5	2,4	0,1		0,0	
	Coelaco		3,3	1,0	0,0		0,0	
	Opisthoteu		12,3	0,7	0,0		0,0	
	Eptapol		9,0	0,4	0,0		0,0	
	Halidio		3,3	0,2	0,0		0,0	
	Lophpar		6,1	0,2	0,0		0,0	
	Genychi		1,4	0,2	0,0		0,0	
	Sebaocu		0,5	0,1	0,0		0,0	
	Proljug		0,5	0,1	0,0		0,0	
	Octopodidae		1,4	0,1	0,0		0,0	
	Centnig		2,4	0,1	0,0		0,0	
	Stomatop		1,4	0,0	0,0		0,0	
	Hepachi		0,9	0,0	0,0		0,0	
	Psamsco		0,5	0,0	0,0		0,0	
	Aprinas		0,5	0,0	0,0		0,0	
	Libigra		1,4	0,0	0,0		0,0	
	Aculnig		0,5	0,0	0,0		0,0	
	Ophipac		0,5	0,0	0,0		0,0	
200 200 0	Tracvil	010	0,5	0,0	0,0	2506.2	0,0	14546
300 - 399.9	Cervjoh	213	33,3	940,1	36,4	2586,3	23,3	1454,6
	Pleumon		21,6	903,0	34,9		22,3	
	Merlgay		75,6	245,4	9,5		6,1	
	Hippmac		70,9	231,3	8,9		5,7	
	Nezupul		29,1	73,3	2,8		1,8	
	Epigcra		40,8	65,9	2,5		1,6	
	Dosigig		8,5	43,6	1,7		1,1	
	Diptfla		15,0	24,1	0,9		0,6	
	Disctsc		1,9	9,8	0,4		0,2	
	Mursgau		54,5	8,2	0,3		0,2	
	Aculnig		3,3	8,0	0,3		0,2	
	Centcre		36,6	7,8	0,3		0,2	
	Cancpor		39,0	4,5	0,2		0,1	
	Centnig		4,2	4,4	0,2		0,1	
	Opisthoteu Campus as		22,5	3,3	0,1		0,1	
	Genymac		4,7	3,0	0,1		0,1	
	Bathmul		11,7	2,9	0,1		0,1	
	Coelaco		8,0	1,7	0,1		0,0	
	Lophpar		8,5	1,1	0,0		0,0	
	Hepachi Ostopodidas		2,8	0,8	0,0		0,0	
	Octopodidae Cooleki		8,5	0,7	0,0		0,0	
	Coelchi Halidio		0,5 4,7	0,6	$_{0,0}^{0,0}$		$0,0 \\ 0,0$	
				0,6			0,0	
	Halacan		1,9	0,4	0,0		0,0	

	Genychi		0,9	0,4	0,0		0,0	
	Eptapol		6,6	0,3	0,0		0,0	
	Stomatop		1,9	0,2	0,0		0,0	
	Xenoatr		2,8	0,2	0,0		0,0	
	Psamsco		0,9	0,2	0,0		0,0	
	Ophipac		6,1	0,2	0,0		0,0	
	Tracvil		2,8	0,1	0,0		0,0	
	Sebaocu		0,5	0,1	0,0		0,0	
	Libigra		1,9	0,1	0,0		0,0	
	Projbah		0,9	0,1	0,0		0,0	
	Dipttra		0,5	0,0	0,0		0,0	
	Aprinas		0,5	0,0	0,0		0,0	
400 - 500	Нірртас	29	75,9	46,1	25,4	181,5	12,6	183,7
	Merlgay		82,8	40,7	22,4		11,1	
	Epigcra		62,1	24,5	13,5		6,7	
	Dosigig		24,1	19,1	10,5		5,2	
	Nezupul		51,7	15,5	8,5		4,2	
	Cervjoh		6,9	13,0	7,2		3,6	
	Diptfla		24,1	6,7	3,7		1,8	
	Aculnig		3,4	3,3	1,8		0,9	
	Hepachi		13,8	3,2	1,8		0,9	
	Disctsc		6,9	2,2	1,2		0,6	
	Mursgau		55,2	2,1	1,2		0,6	
	Pleumon		10,3	2,0	1,1		0,5	
	Centcre		37,9	1,5	0,9		0,4	
	Centnig		13,8	0,5	0,3		0,1	
	Opisthoteu		27,6	0,3	0,2		0,1	
	Cancpor		20,7	0,3	0,1		0,1	
	Stomatop		13,8	0,2	0,1		0,1	
	Aprinas		10,3	0,2	0,1		0,0	
	Bathmul		6,9	0,1	0,1		0,0	
	Octopodidae		6,9	0,0	0,0		0,0	
	Xenoatr		6,9	0,0	0,0		0,0	
	Halidio		3,4	0,0	0,0		0,0	
	Eptapol		3,4	0,0	0,0		0,0	

4.8.1.4. Identificación y caracterización espacial de las asociaciones específicas

El número de especies con aporte en peso mayor a 0,1% fue de 18, destacando *P. monodon*, *C. Johni*, *M. gayi* y *H. macrops* (Tabla 36). Los lances utilizados en los análisis multivariados para identificar ensambles multiespecíficos fue de 474; de estos, el 83 % se concentró entre 200 y 400 m de profundidad. La distribución de los lances por Región muestra que el 58% se concentra de la III a la IV Regiones (Tabla 37).

Tabla 36. Especies con aporte mayor a 0,1% respecto de la captura total de la fauna acompañante utilizados en los análisis multivariados; n = 474 lances.

Acrónimo	%
Cervjoh	40,78
Pleumon	38,18
Aculnig	0,15
Bathmul	0,07
Cancpor	0,66
Centcre	0,17
Centnig	0,07
Diptfla	0,74
Disctsc	0,20
Dosigig	1,18
Epigcra	2,01
Genymac	0,14
Hepachi	0,05
Нірртас	6,33
Merlgay	7,12
Mursgau	0,26
Nezupul	1,83
Opisthoteu	0,06

Tabla 37. Número de lances utilizados en análisis multivariados ordenados por Región (latitud) y profundidad; n = 474 lances.

Región		Profundidad (m)						
Kegion	100 - 199	200 - 299	300 - 399	400 - 499	> 500			
II	0	3	17	5	0			
III	4	42	31	7	0			
IV	24	58	97	10	2			
V	3	18	22	3	0			
VI	0	26	9	1	0			
VII	15	38	13	0	0			
VIII	2	18	6	0	0			

4.8.2. Identificación de asociaciones específicas.

El análisis de dendrograma permite distinguir cinco grupos de estaciones (lances), las que presentan una estructura de CPUE de especies con similitud mayor a 40% (Figura 31). No se consideró en análisis posteriores aquellos grupos que, al nivel de corte menor que 40% de similitud, no estén presentes en al menos 10 lances.

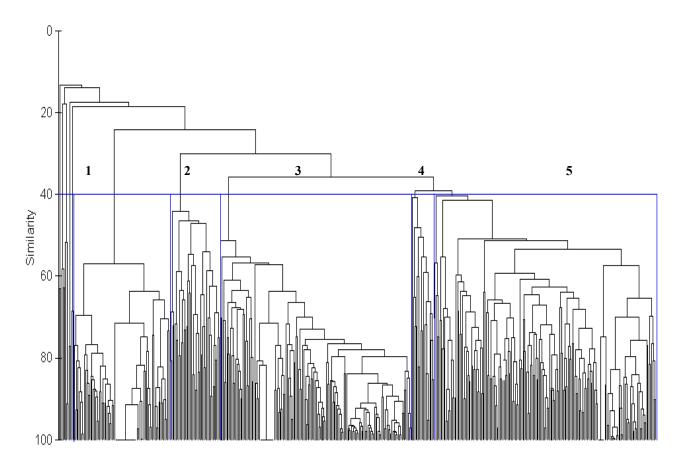


Fig. 31. Análisis de Dendrograma de la CPUE de la fauna acompañante presente en las capturas de camarón nailon en las Regiones II a VIII (n = 474 lances).

El análisis de ordenación distinguió, con un nivel de significancia moderadamente alto (Stress = p = 0,1), los mismos cinco grupos de estaciones (lances) que el análisis de clasificación o dendrograma (Fig. 32). Esto valida el criterio de clasificación de 40% de similitud, lo que permite definir a los cinco ensambles. El grupo señalado "ne" corresponde a aquellas estaciones (lances) cuya composición específica no logró constituir un ensamble por si mismo.

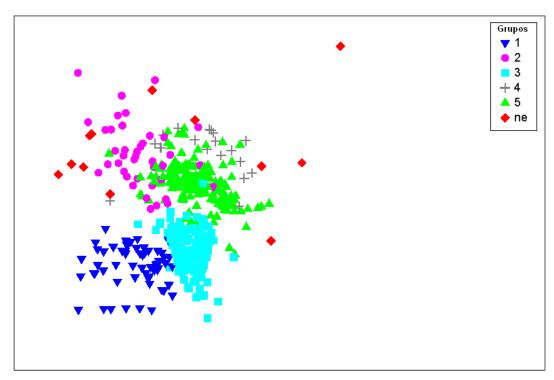


Fig. 32. Análisis de Ordenación o Escalamiento Multidimensional (MDS) de la CPUE de la fauna acompañante presente en las capturas de camarón nailon en las Regiones II a VIII. Los números 1 a 5 corresponden a los ensambles identificados. El grupo "ne" corresponde lances que en el dendrograma no constituyen ningún grupo; n = 474 lances.

Latitudinalmente, los ensambles 1, 3 y 5 se encuentran distribuidos en toda la zona de estudio $(25^{\circ}S - 37^{\circ}S)$. Los ensambles 2 y 4 ocurren desde la IV a la VIII Regiones $(29^{\circ}S - 37^{\circ}S)$.

Batimétricamente, los ensambles específicos se distribuyen en diferentes estratos. El grupo 1 se ubica entre 150 y 300 m de profundidad; los grupos 2 y 3 se ubican entre 200 y 400 m de profundidad; y los grupos 4 y 5 se ubican entre 250 y 500 m de profundidad, concentrándose principalmente en el rango batimétrico de 300 a 450 m (Tabla 38).

Las especies que están presentes en las cinco asociaciones faunísticas se presentan en la Tabla 39. En los ensambles específicos identificados también fueron pocas las especies (tres a siete) que acumuladamente alcanzan entre 91% y 99% de la captura estandarizada total por asociación. En el grupo 1 *P. monodon* es la especie de mayor importancia respecto al peso total de la fauna acompañante.

En el grupo 2 las especies más importantes son *D. flavirostris* y *N. pulchella*, seguidas por *H. macrops* y *M. gayi*. En el grupo 3 la especie más importante es *C. johni*. En el grupo 4 las especies más importantes son *C. porteri*, *H. macrops* y *N. pulchella*. En el grupo 5 las especies más importantes son *M. gayi* y *H. macrops*.

Tabla 38. Distribución latitudinal (grados) y batimétrica (metros) de los grupos identificados.

Ensamble	Latitud (°)	Profundidad (m)
1	25°S – 37°S	150 – 300
2	$29^{\circ}S - 37^{\circ}S$	200 - 400
3	$25^{\circ}S - 37^{\circ}S$	200 - 400
4	$29^{\circ}S - 37^{\circ}S$	250 - 450
5	$25^{\circ}\text{S} - 37^{\circ}\text{S}$	250 - 450

Tabla 39. Fauna acompañante en las capturas de camarón nailon ordenada por los ensambles identificados mediante métodos de clasificación y ordenación. IRFA= índice de importancia relativa respecto de la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo. Clave: 0.0 = <0.05

Ensamble	Acrónimo	Total lances	Lances positivos (%)	CPUE total (ton/km²)	IRFA (%)	F. acompañante, CPUE total (ton/km²)	IRRO (%)	Heteree
1	Pleumon	76	100,0	2847,4	89,5	3179,9	85,0	169,2
	Cervjoh		50,0	244,8	7,7		7,3	
	Нірртас		50,0	43,6	1,4		1,3	
	Merlgay		67,1	38,4	1,2		1,1	
	Epigcra		10,5	1,5	0,0		0,0	
	Mursgau		27,6	1,2	0,0		0,0	
	Centcre		30,3	1,1	0,0		0,0	
	Cancpor		21,1	0,7	0,0		0,0	
	Dosigig		2,6	0,6	0,0		0,0	
	Nezupul		15,8	0,3	0,0		0,0	
	Diptfla		2,6	0,0	0,0		0,0	
	Hepachi		2,6	0,0	0,0		0,0	
	Bathmul		1,3	0,0	0,0		0,0	
2	Diptfla	40	97,5	29,3	24,4	120,0	6,2	355,7
	Nezupul		65,0	25,8	21,5		5,4	
	Merlgay		62,5	19,1	15,9		4,0	
	Нірртас		55,0	13,6	11,3		2,9	
	Dosigig		12,5	10,4	8,7		2,2	
	Epigcra		50,0	8,2	6,8		1,7	
	Cervjoh		10,0	5,1	4,3		1,1	

	Disctsc		5,0	2,5	2,1		0,5	
	Aculnig		2,5	1,9	1,6		0,4	
	Opisthoteu		30,0	1,9	1,6		0,4	
	Centcre		40,0	0,9	0,8		0,2	
	Bathmul		7,5	0,5	0,4		0,1	
	Mursgau		20,0	0,3	0,3		0,1	
	Genymac		2,5	0,3	0,3		0,1	
	Hepachi		2,5	0,1	0,1		0,0	
	Cancpor		5,0	0,1	0,1		0,0	
	Pleumon		2,5	0,1	0,0		0,0	
3	3 Cervjoh	152	99,3	2830,0	87,3	3241,4	73,5	611,4
	Merlgay		90,1	176,3	5,4		4,6	
	Нірртас		88,8	126,0	3,9		3,3	
	Pleumon		23,7	41,0	1,3		1,1	
	Epigcra		25,0	18,2	0,6		0,5	
	Dosigig		3,9	11,5	0,4		0,3	
	Nezupul		21,1	9,0	0,3		0,2	
	Mursgau		67,8	8,0	0,2		0,2	
	Diptfla		4,6	7,0	0,2		0,2	
	Cancpor		53,3	3,4	0,1		0,1	
	Centnig		5,9	2,7	0,1		0,1	
	Bathmul		9,2	2,4	0,1		0,1	
	Centcre		18,4	2,1	0,1		0,1	
	Genymac		3,3	2,1	0,1		0,1	
	Disctsc		0,7	0,9	0,0		0,0	
	Opisthoteu		12,5	0,6	0,0		0,0	
	Aculnig		2,6	0,1	0,0		0,0	
	Hepachi		0,7	0,1	0,0		0,0	
۷	4 Cancpor	18	33,3	41,8	51,5	81,1	14,7	202,5
	Нірртас		100,0	20,5	25,3		7,2	
	Nezupul		72,2	13,5	16,7		4,8	
	Epigcra		27,8	2,9	3,6		1,0	
	Mursgau		61,1	0,9	1,1		0,3	
	Centcre		38,9	0,6	0,7		0,2	
	Genymac		11,1	0,6	0,7		0,2	
	Diptfla		5,6	0,2	0,2		0,1	
	Opisthoteu		33,3	0,1	0,1		0,0	
	Bathmul		5,6	0,0	0,1		0,0	
-	Merlgay		5,6	0,0	0,0		0,0	
5	0,	176	99,4	305,1	32,9	928,5	12,0	1617,2
	Нірртас		85,2	275,0	29,6		10,8	
	Epigcra		54,5	120,6	13,0		4,7	
	Nezupul		39,2	89,8	9,7		3,5	
	Dosigig		14,2	55,9	6,0		2,2	
	Diptfla		16,5	19,4	2,1		0,8	
	Disctsc		2,8	12,0	1,3		0,5	
	Aculnig		2,3	9,3	1,0		0,4	
	Mursgau		60,8	9,3	1,0		0,4	
	Centcre		38,1	7,7	0,8		0,3	
	Cervjoh		8,5	5,5	0,6		0,2	

Genymac	8,5	4,7	0,5	0,2
Cancpor	37,5	4,1	0,4	0,2
Hepachi	4,5	3,7	0,4	0,1
Bathmul	10,8	2,3	0,2	0,1
Centnig	4,0	1,9	0,2	0,1
Opisthoteu	24,4	1,7	0,2	0,1
Pleumon	2,3	0,4	0,0	0,0

4.8.3. Detección de diferencias entre asociaciones

4.8.3.1. Análisis de Similitud (ANOSIM)

De acuerdo con el criterio de clasificación utilizando la matriz de similitud de Bray – Curtis, los ensambles identificados son estadísticamente distintos entre sí (criterio: nivel de similitud de 40%), lo que queda demostrado en los valores de contraste entre los ensambles (Tabla 40), los que son todos mayores a 0,5. La interpretación es que, desde un punto de vista comunitario, se revela la existencia de diferencias entre los grupos o asociaciones, aun cuando se presenten en una misma área geográfica. Estas diferencias están dadas principalmente por la variación en los valores de CPUE de las principales especies de la fauna acompañante (*P. monodon, C. johni, M. gayi, H. macrops* y *N. pulchella*).

Tabla 40. Análisis de Similitud (ANOSIM) para probar la existencia de diferencias significativas entre los ensambles faunísticos identificados a partir de la matriz de similitud de Bray-Curtis; estadígrado p = 0.001.

Pares de ensambles	R
1-2	1,0
1-3	0,7
1-4	1,0
1-5	0,9
2-3	0,9
2-4	0,7
2-5	0,6
3-4	1,0
3-5	0,7
4-5	0,6

4.8.3.2. Contribución de cada especie en la similitud en los ensambles identificados mediante análisis de clasificación por medio de análisis de Porcentaje de Similitud (SIMPER)

La especie de la fauna acompañante que es responsable de la mayor similitud interna en el grupo 1 es *P. monodon*, mientras que en el grupo 2 la especie responsable es *D. flavirostris*. En el grupo 3 las especies más importantes son *C. johni* y *M. gayi*. En el grupo 4 *H. macrops* y *N. pulchella* son las especies más importantes, mientras que en el grupo 5 lo son *M. gayi* y *H. macrops*. Las especies restantes al interior de cada grupo del by-catch contribuyen en muy baja cantidad (Tabla 41).

Tabla 41. Especies de mayor contribución a la similitud de las muestras (lances) en cada grupo.

Ensamble	Acrónimo	Similitud Promedio	D.E. Sim.	Contribución (%)
1	Pleumon	50,81	2,70	76,44
	Cervjoh	5,62	0,54	8,45
	Merlgay	5,32	0,83	8,01
2	Diptfla	24,42	2,31	48,49
	Nezupul	6,96	0,76	13,81
	Merlgay	6,30	0,73	12,50
	Нірртас	4,62	0,63	9,18
	Epigcra	4,03	0,53	8,00
3	Cervjoh	37,06	2,61	54,74
	Merlgay	12,70	1,79	18,75
	Нірртас	10,50	1,71	15,51
	Mursgau	3,72	0,86	5,50
4	Нірртас	33,23	3,07	61,18
	Nezupul	11,26	0,89	20,73
	Mursgau	4,41	0,70	8,11
5	Merlgay	24,08	2,51	44,07
	Нірртас	15,82	1,46	28,97
	Epigcra	4,36	0,60	7,97
	Mursgau	3,80	0,71	6,96
	Nezupul	2,41	0,40	4,42

Las especies que aportan mayormente a la diferenciación entre grupos faunísticos son *P. monodon, C. johni, D.* flavirostris, *H. macrops* y *M. gayi* (Tabla 42).

Tabla 42. Especies de mayor contribución a la disimilitud entre grupos.

Ensambles	Acrónimo	Disimilitud Promedio	D.E. Disimilitud	Contribución (%)
1-2	Pleumon	21,00	3,20	24,15
	Diptfla	17,10	2,36	19,66
1-3	Pleumon	20,63	2,24	31,33
	Cervjoh	15,87	1,37	24,11
	Merlgay	7,15	1,32	10,86
	Нірртас	6,94	1,39	10,55
1-4	Pleumon	23,78	3,76	27,23
	Нірртас	16,80	1,82	19,24
	Nezupul	11,14	1,25	12,76
1-5	Pleumon	20,68	3,17	25,57
	Merlgay	12,41	1,49	15,34
	Нірртас	10,67	1,51	13,19
2-3	Cervjoh	17,49	2,58	22,76
	Diptfla	14,86	2,31	19,34
	Nezupul	7,22	1,10	9,40
	Merlgay	6,52	1,31	8,49
2-4	Diptfla	15,30	2,42	21,56
	Нірртас	11,59	1,46	16,34
	Nezupul	8,00	1,24	11,29
	Merlgay	7,15	1,14	10,09
	Epigcra	6,57	1,00	9,27
2-5	Diptfla	12,68	1,95	19,89
	Merlgay	8,37	1,21	13,13
	Нірртас	7,86	1,28	12,33
	Nezupul	6,78	1,14	10,64
	Epigcra	6,37	1,11	10,00
3-4	Cervjoh	20,40	3,40	27,29
	Нірртас	10,51	1,43	14,06
	Nezupul	9,53	1,24	12,75
	Merlgay	9,06	2,16	12,12
3-5	Cervjoh	17,41	2,76	27,63
	Нірртас	7,19	1,39	11,41
	Merlgay	7,08	1,09	11,24
4-5	Merlgay	15,00	2,67	24,63
	Nezupul	8,34	1,23	13,70
	Epigcra	6,52	1,06	10,71
	Нірртас	6,43	0,97	10,56

4.9. Objetivo Específico Nº 5.

4.9.1. Antecedentes.

(Silva, 1996) realizó 204 estaciones oceanográficas de fondo, las que fueron realizadas en conjunto con la mayoría de los lances de pesca, entre 118 y 410 m de profundidad, registrando la temperatura con un termómetro de inversión y recolectando muestras de agua mediante botellas Niskin para los análisis químicos de salinidad y oxígeno disuelto, a una profundidad de 10 ± 5 m sobre el fondo. Las profundidades de registro de temperatura y toma de muestra de agua fueron corregidas por ángulo y por cálculos termométricos estándar. Las técnicas analíticas químicas empleadas correspondieron a un salinómetro inductivo Autolab y Oxígeno disuelto mediante método Winkler modificado por Carpenter (1965).

Silva (1996) detectó temperaturas de 7,14 a 11,17°C, siendo las más bajas de fondos más profundos y las superiores de los fondos más someros, y hay un gradiente latitudinal con temperaturas más frías hacia el sur. Las salinidades variaron entre los 34,341 y 34,796 psu, con las salinidades más bajas en aguas más profundas y más altas en las más someras, observándose también un gradiente latitudinal con salinidades mayores hacia el sur. El oxígeno disuelto fluctuó entre 0,21 ml/l y 2,87 ml/l, con las menores concentraciones en las aguas más someras y las más altas en las más profundas, y con concentraciones mayores hacia el sur. El agua predomínante en la zona de estudio fue la Ecuatorial Subsuperficial e indicios de Agua Intermedia Antártica. En cuanto al viento fue predominantemente del sur y suroeste, con algunos periodos de viento norte o noroeste.

En un Anexo del estudio de Escuela de Ciencias del Mar (1996), se relacionaron las cpue de camarón nailon con los hallazgos oceanográficos, señalando que el nivel presente de variabilidad, impide precisar explicaciones estadísticamente aceptables. Para reducir este problema se realizaron agrupaciones por foco de presencia, en los rangos de profundidad caracterizados por su valor promedio (profundidad promedio) y factores ambientales (temperatura, salinidad y oxígeno disuelto). Mediante el uso de modelos lineales múltiples, se destacó el efecto de la profundidad

media, mientras los factores oceanográficos señalados, contienen tal cantidad de ruido analítico que todos los análisis de selección paso a paso los excluyen.

El segundo estudio se realizó en la zona de estudio que abarcó la III y IV Región del país, entre los 27°50'S y 30°00'S. Se establecieron 14 transectas latitudinales, separadas por 10 mn, con 6 estaciones oceanográficas sobre cada una, las que se ubicaron en los veriles de 100, 200, 300, 400, 500 y 600 m, entre el 7 y 11 septiembre de 2002. En las estaciones se registró la temperatura y se tomaron muestras de agua para el análisis de salinidad y oxígeno disuelto, a unos 10 m del fondo. En total se realizaron 84 estaciones oceanográficas de muestreo cercano al fondo, registrándose además la dirección y velocidad del viento (Arana *et al.*, 2003). Los métodos de análisis utilizados fueron los mismos ya descritos en Silva (1996).

En este estudio, la información de temperatura, salinidad, oxígeno disuelto y vientos, se entrega como un Reporte de Datos. Se presentan mapas con la distribución de las isóbatas de 100, 200, 500 y 1000 m en la zona, basado en la información de la carta náutica 300 del SHOA y mapas con la distribución de temperatura, salinidad y oxígeno disuelto para el período de muestreo. Para detectar la posible asociación entre la distribución de la abundancia del camarón nailon y la temperatura, salinidad y oxígeno disuelto, se emplearon dos enfoques, a) el análisis visual de la información realizando una cartografía de las variables, b) el análisis de correlaciones cruzadas para obtener los rangos de distribución del recurso respecto de ellas. La información de cada variable, densidad y oceanográficas, fueron interpoladas al área prospectada con el programa Surfer 6.0., utilizando el interpolador inverso de la distancia, que crea grillas continuas de datos cuya correlación disminuye al aumentar la distancia entre ellos (densidad) y el kriging, utilizado para datos muy correlacionados entre sí (datos oceanográficos). Para establecer las relaciones, se analizó la distribución del recurso y las variables oceanográficas, mediante gráficos con la frecuencia de la distribución de la especie con respecto a las variables mediante tablas de crostabulación, para determinar rangos óptimos de preferencia de la especie en relación a esos parámetros. Se realizaron además asociaciones entre los planos de densidad del camarón nailon y las variables ambientales a través de la estimación del índice v de Cramer, donde los valores varían entre cero (no existencia de asociación) y uno (asociación perfecta).

Las características oceanográficas de las aguas sobre la plataforma continental y porción superior del talud (100–600 m), en septiembre de 2002, corresponden a Aguas Ecuatoriales Subsuperficiales (AESS) y Aguas Intermedias Antárticas, lo que es típico de la zona entre 28° y 30°S. El AESS presentó características oceanográficas más intensas que las correspondientes a septiembre, lo cual fue asociado con el desarrollo en curso de un evento cálido de El Niño. El índice v de Cramer, indicó una baja relación entre las variables oceanográficas y la CPUA de camarón nailon (Arana *et al.*, 2003). El análisis del índice de Cramer indicó asociaciones significativas pero moderadas, destacándose el mayor grado de asociación que existe entre la distribución del recurso y la variable temperatura. Sin embargo, los valores obtenidos (menores de 0,4) no permitieron confirmar o rechazar, la existencia de una asociación entre la distribución con las variables en cuestión (Arana *et al.*, 2003).

Cabe destacar que ninguno de los dos estudios FIP analizados consideró el registro de antecedentes relacionados con los sustratos presentes en el área donde se encontraba el camarón nailon, durante el periodo de estudio, estando centrado el análisis en características oceanográficas propias de la columna de agua. Esto probablemente explique por qué los resultados de la relación entre las variables oceanográficas y el recurso no fueron los esperados o ésta es poco clara.

4.9.1. Relación espacial entre cpua y los tipos de sedimentos.

Con la información recopilada frente a la zona de Coquimbo, se procedió a generar mediante análisis geoestadístico en el programa ArcGis 9.3, un polígono de distribución de los sedimentos en los focos de abundancia históricos de camarón nailon. El rango de distribución granulométrica de los sedimentos, empleando la denominación Wentworth (1922), mostraron que aunque en el área de estudio se observan desde las arenas muy finas hasta el limo grueso, existe un claro predominio de las arenas finas y medianas (Fig. 33).

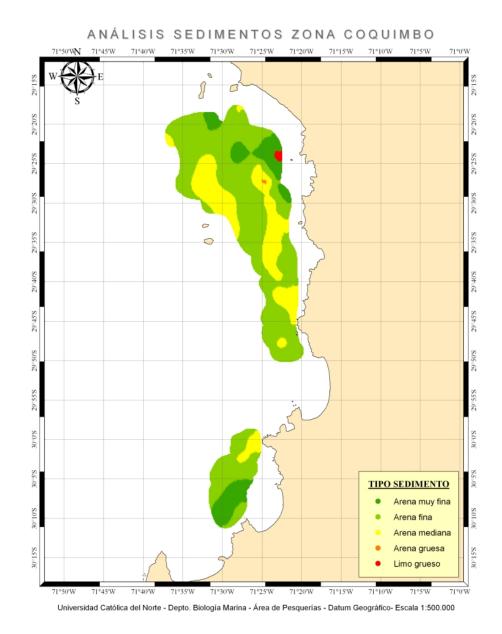


Fig. 33. Disposición espacial de los tipos de sedimentos en la zona de Coquimbo.

Para analizar las posibles variaciones entre la densidad (ton/ hora de arrastre) y el tipo de sedimento, se consideró un total de 1.996 lances realizados durante la ejecución de los proyectos de evaluación directa de langostino colorado, langostino amarillo y camarón nailon en el período comprendido entre el año 2003 y 2009. Del total de lances analizados, 272 (13,6%) lances con captura de camarón nailon coincidieron con sectores donde se contaba con antecedentes de las características de los sedimentos (Fig. 34 – Tabla 43).

ANÁLISIS DE SEDIMENTOS ZONA DE COQUIMBO 71°50'W 71°10'W 71°20'W 71°0'W 29°20'S 29°40'S 29°50'S **PROYECTO** FIP Nº 2003-03 FIP Nº 2004-11 FIP Nº 2005-09 FIP N° 2006-04 30°10'S FIP Nº 2006-11 FIP Nº 2007-19 FIP Nº 2008-16 FIP Nº 2009-15 FIP Nº 2009-16

Fig. 34. Disposición espacial de los datos de cpue (ton/hora de arrastre) obtenidos en los proyectos FIP de Evaluación directa 2003-2009 sobre los tipos de sedimento.

Universidad Católica del Norte - Depto. Biología Marina - Área de Pesquerías - Datum geográfico WGS84 - Escala 1:500.000

71°30'W

71°50'W

71°20'W

71°10'W

71°0'W

Tabla 43. Información de la densidad de camarón nailon (ton/ hora de arrastre) obtenida de los proyectos FIP ejecutados entre los años 2003 y 2009.

		PROYECTO									
SEDIMENTO	DATO	2003-03	2004-11	2005-09	2006-04	2006-11	2007-19	2008-16	2009-15	2009-16	TOTAL
	N	10	8	6	2	5	20	8	6	5	70
Arena mediana	Mín CPUE (Kg/hora)	2,00	13,59	148,64	70,00	122,77	8,25	1,01	272,00	170,00	1,01
	Máx CPUE (Kg/hora)	451,76	288,00	483,28	630,00	1.005,44	1.149,99	346,00	2.176,00	573,75	2.176,00
	N	33	13	12	15	22	40	15	22	19	191
Arena fina	Mín CPUE (Kg/hora)	0,80	1,60	81,96	24,71	0,00	19,44	1,58	13,60	75,39	0,00
	Máx CPUE (Kg/hora)	480,00	520,00	1.428,00	910,00	3.045,48	1.630,04	467,50	3.944,00	1.961,54	3.944,00
	N			2			1	3	4	1	11
Arena muy fina	Mín CPUE (Kg/hora)			136,00			112,08	62,54	68,00	7,50	7,50
	Máx CPUE (Kg/hora)			340,00			112,08	509,15	1.564,00	7,50	1.564,00
Total N		43	21	20	17	27	61	26	32	25	272
Total Mín CPUE (Kg/hora)		0,80	1,60	81,96	24,71	0,00	8,25	1,01	13,60	7,50	0,00
Total Máx CPUE (Kg/hora)		480,00	520,00	1.428,00	910,00	3.045,48	1.630,04	509,15	3.944,00	1.961,54	3.944,00

Al analizar la distribución de la densidad poblacional por tipo de sedimento, no se encontró un patrón de distribución claro, debido a la presencia de altos valores extremos, en consecuencia, no se oberva una relación clara entre las CPUE mayores en algunos de los tipos de sedimentos. Los valores de densidad para el camarón nailon variaron de 0,8 a 3.944,0 Kg/hora de arrastre (Fig. 35).

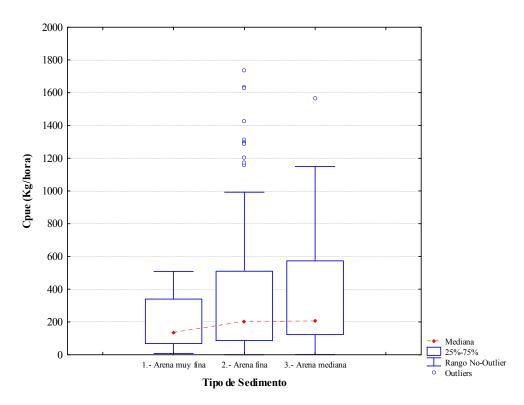


Fig. 35. Densidad poblacional de camarón nailon (CPUE, Kg/hora de arrastre) por tipo de sedimento.

Para la especie, sobre el 70% de las observaciones se encontraban sobre arena fina, seguido de arena mediana (25,7%), los dos tipos de sedimentos que concentran la mayoría de los lances (Fig. 36).

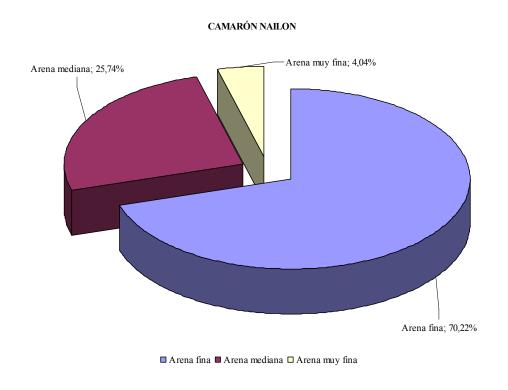


Fig. 36. Distribución de la densidad poblacional de camarón nailon por tipo de sedimento.

4.10. Objetivo Específico Nº 6.

4.10.1. Situación actual del recurso en la zona de estudio.

4.10.1.1. Crecimiento y matriz de transición.

Se consideró los parámetros de crecimiento de camarón nailon establecidos por Roa y Ernst (1996), ya que los autores comunican los errores estándar de los parámetros de crecimiento, las longitudes medias separadas por MIX y la desviación estándar. Estos fueron los datos que permitieron construir la matriz de transición de crecimiento. A partir del error estándar de los parámetros de crecimiento, se generaron 200 valores alternativos e igualmente probables considerando la correlación existente entre ellos para calcular la tasa de crecimiento en función de la longitud (incrementos de 0 a 50 en 1 mm de longitud del cefalotórax). Un ejemplo de una de las realizaciones de este procedimiento se muestra en la Figura 37.

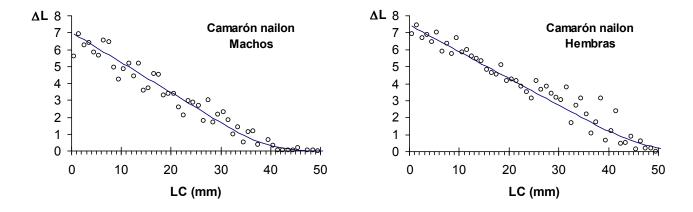


Fig. 37. Tasa de crecimiento (mm/año) de camarón nailon en función de la longitud. La línea representa la tasa promedio de 200 valores alternativos e igualmente probables y los círculos vacíos una realización. Los valores fueron generados a partir de los parámetros de crecimiento de Roa y Ernst (1996).

Se construyeron tres matrices de transición para cada sexo, representadas por una función normal, log-normal y gamma. De éstas, la función de distribución log-normal fue la más verosímil en el modelo de evaluación de stock (Tabla 44).

Tabla 44. Función de log-verosimilitud considerando tres funciones de distribución de probabilidad para construir la matriz de transición del crecimiento.

Matriz de transición de crecimiento	Log-verosimilitud
Función normal	13197,60
Función log-normal	8801,09
Función gamma	9152,71

4.10.1.2. Consideraciones sobre de la evaluación indirecta

Una de las limitaciones importantes en la presente evaluación indirecta radica en el hecho de no contar con la composición por tallas de las capturas de camarón nailon. Esta información es de uso exclusivo del Instituto de Fomento Pesquero, y no fue factible contar con ella al momento de realizar la evaluación. Para superar esta limitante, se optó por utilizar una curva de selectividad a la talla comunicada por Arana *et al.* (2003) que representa el periodo 1999-2003 para la pesquería, y estimada a partir de un modelo talla-estructurado similar al aquí utilizado. La curva de selectividad sigue un modelo logístico, con los parámetros $L_{50} = 22,18$ mm y $L_{95} = 26,27$ mm LC.

Se contó con datos de composición por tallas de los cruceros de evaluación directa de los años 1996, 1999 – 2004, 2006, y 2008. No se contó con los datos del 2005, ya que dicha evaluación no está disponible. No obstante, se cuenta con la magnitud de la biomasa evaluada. Con el objeto de cuantificar el stock, se asume que la biomasa evaluada mediante área barrida representa 100 % la biomasa predicha por el modelo, según una curva de selectividad propia para la composición por tallas de los cruceros. El periodo de evaluación comprende desde 1995 a 2008.

En los aspectos biológicos, se considera que entre la II y VIII Región ocurre una sola unidad de stock de camarón nailon, cerrada a las migraciones. A su vez, la tasa de mortalidad natural se asume igual a 0,3 año⁻¹, la que se asume constante entre años y tallas.

4.10.1.3. Evaluación de stock

La biomasa vulnerable estimada por el modelo de dinámica recoge bien la tendencia observada en las evaluaciones de área barrida a contar de 1999, pero tiende a subestimar la alta biomasa evaluada en 1996 (Fig. 38).

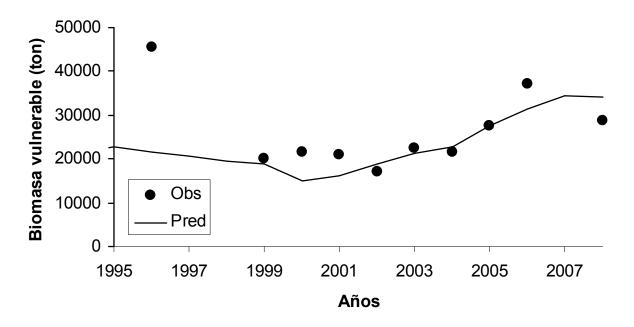


Fig. 38. Biomasa vulnerable de camarón nailon evaluada mediante le método de área barrida (puntos) y ajuste del modelo a los datos (línea). Nótese la ausencia de dato para el año 2007, cuando no se realizó evaluación directa de la especie.

En términos de la estructura de tallas en la fracción vulnerable, la curva de selectividad asociada a los cruceros de evaluación indica que en éstos se cuantifica una fracción de ejemplares más pequeños que la fracción que remueve la pesquería (Fig. 39). El contraste del modelo con los datos de composición por tallas de los cruceros indica en general un buen grado de ajuste (Figs. 40 y 41).

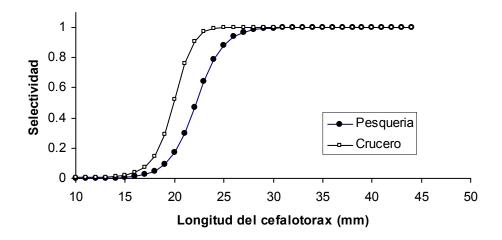


Fig. 39. Patrón de explotación asumido para la pesquería y estimado para la fracción vulnerada en los cruceros de evaluación directa por área barrida.

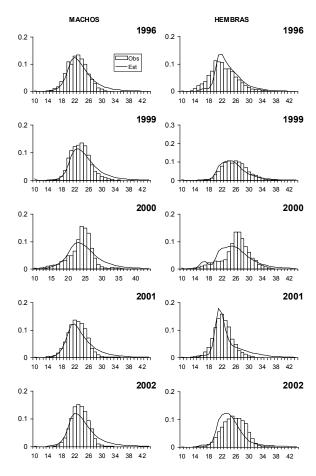


Fig. 40. Estructura de tallas de camarón nailon en los cruceros de evaluación directa. Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación (1996 – 2002).

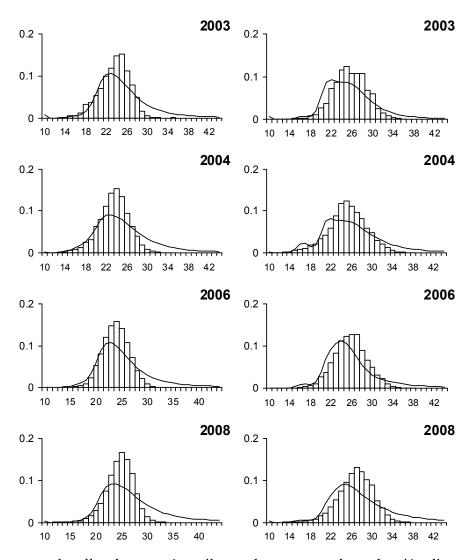


Fig. 41. Estructura de tallas de camarón nailon en los cruceros de evaluación directa. Las barras representan los datos observados y la línea contínua el ajuste del modelo de evaluación (2003-2008).

La evaluación indica niveles de biomasa total, comprendida entre los 10 y 44 mm LC, del orden de 45 mil toneladas en el 2008, de las cuales cerca de 29 mil toneladas representan la fracción explotable por la pesquería (Fig. 42). La razón entre las capturas anuales y la fracción explotable, que mide la intensidad de explotación, fluctúo entre 15 y 88% (Tabla 45). Desde el 2001, la tasa de explotación presenta una sostenida disminución. Esto estaría asociado al crecimiento de la biomasa a contar del 2001 y a las regulaciones por cuotas globales de captura que han determinado niveles de captura estables y que han fluctuado entre 3,6 y 4,5 toneladas en el periodo 2002-2008 (Tabla 45).

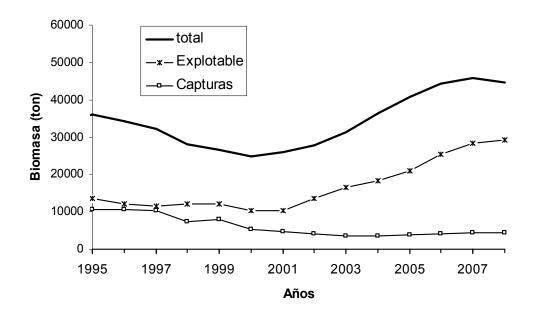


Fig. 42. Tendencias de biomasa de camarón nailon (II-VIII Región).

Tabla 45. Resumen de la evaluación de la biomasa total, explotable de camarón nailon, tasa de explotación anual, y comparación entre la biomasa evaluada en los cruceros con la salida del modelo, II-VIII Región.

	Cantunas	Biomasa	Explotable (t)	Tasa de	Biomasa cruceros		
Años	Capturas (t)	Total (t)		Explotación Anual	Observada (t)	Estimada (t)	
1995	10.620	36.066	13.518	0,786		22.638	
1996	10.535	34.427	12.078	0,872	45.385	21.589	
1997	10.239	32.080	11.645	0,879		20.792	
1998	7.301	28.023	12.216	0,598		19.496	
1999	7.951	26.733	12.221	0,651	20.000	18.767	
2000	5.448	24.892	10.364	0,526	21.415	14.926	
2001	4.863	26.135	10.399	0,468	21.000	16.243	
2002	4.112	27.742	13.609	0,302	17.014	18.909	
2003	3.590	31.442	16.642	0,216	22.375	21.208	
2004	3.663	36.344	18.360	0,200	21.470	22.852	
2005	3.895	40.932	20.891	0,186	27.500	27.482	
2006	4.262	44.324	25.367	0,168	37.111	31.534	
2007	4.396	45.810	28376	0,155		34.537	
2008	4.496	44.778	29182	0,154	28.772	34.230	

En el periodo de evaluación, el reclutamiento anual medido como el número de ejemplares a los 10 mm de LC, muestra un periodo estable entre 1999 y 2008, con la excepción del reclutamiento de 1999, 2003 y 2005 (Fig. 43). La intensidad de reclutamiento ocurrido en 1999 y en el 2003 fue determinante en el crecimiento de la abundancia y biomasa a contar del 2001, el primero ayudando a detener la disminución de la biomasa y el segundo dando un nuevo impulso de crecimiento que se está consolidando en los últimos tres años.

Fig. 43. Reclutamiento en número de individuos de camarón nailon a la longitud de 10 mm LC, II-VIII Región.

4.10.1.4. Situación actual y lineamientos de manejo

La relación entre la tasa de explotación y la biomasa explotable de camarón nailon se muestra en la Figura 44, donde se observa la trayectoria temporal de la situación del recurso. La situación actual indica un recurso alejándose de una condición de sobrepesca, incrementándose en biomasa y con una tasa de explotación anual que tiende al 15% de la fracción explotable. En base a este resultado, se establece en forma empírica algunos lineamientos para el manejo del recurso. En la figura se ilustra el uso de un umbral absoluto de biomasa explotable de 10 mil toneladas, por debajo de este nivel la pesquería se ubicaría en un nivel no deseado implicando una situación de sobreexplotación, mientras que un límite precautorio de biomasa explotable podría estar definido

en torno de las 15 mil toneladas. En niveles por debajo de 15 mil ton, la tasa de explotación debería ser reducida linealmente.

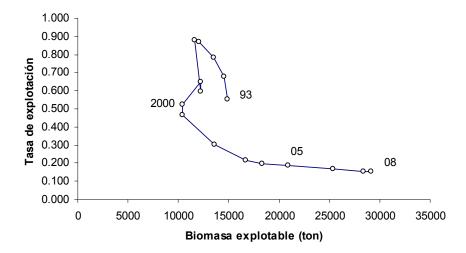


Fig. 44. Evolución de la tasa de explotación en función de la biomasa explotable de camarón nailon en el periodo 1995-2008, II – VIII Regiones.

Desde el punto de vista de la biomasa desovante, definida como la fracción de hembras maduras u ovígeras, el umbral absoluto de biomasa coincidiría con aproximadamente 10 mil toneladas de biomasa desovante (Fig. 45).

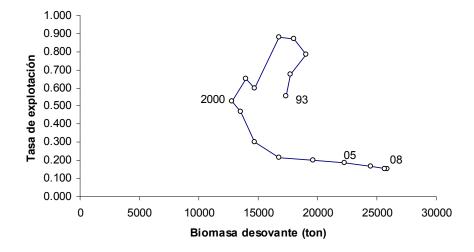


Fig. 45. Evolución de la tasa de explotación en función de la biomasa desovante (hembras maduras) de camarón nailon en el periodo 1995-2008.

4.10.1.5. Análisis de riesgo

Con el objeto de evaluar acciones de manejo alternativas, se realizó un análisis de riesgo mediante el re-muestreo de la función de densidad a posterior utilizando el algoritmo Monte Carlo de la Cadena de Markov (MCMC) implementado en AD Model Builder. Esto consistió en 5.000 submuestras obtenidas de 1.000.000 de simulaciones.

Todas las acciones de manejo alternativas se evaluaron proyectando bajo incertidumbre el estado futuro del recurso en un periodo de 10 años, considerando capturas constantes (e.g. 0, 2.500, 5.000 y 7.500 ton). Se utilizó la biomasa explotable como indicador de los efectos de la pesca con el objeto de minimizar el impacto de la variabilidad del reclutamiento, y se usó la razón entre la biomasa explotable proyectada al final de los 10 años (año 2018) y la biomasa explotable del año 2008. En cada escenario de proyección se calculó la tasa de explotación, que también se consideró un elemento de decisión.

De acuerdo con los probables estados de la naturaleza en el 2008 (biomasa explotable), se observa una distribución centrada en 29 mil t, y podría fluctuar entre 22 y 39 mil toneladas (Fig. 46).

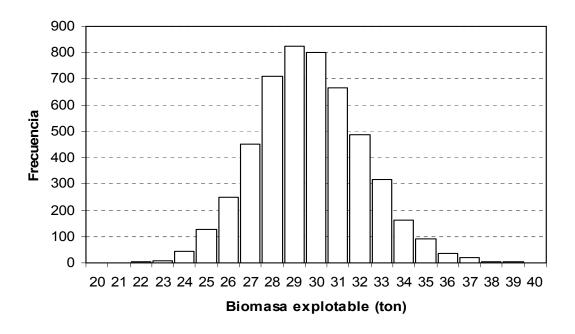


Fig. 46. Biomasa explotable de camarón nailon en 2008.

Para evaluar las acciones de manejo, el estado de la naturaleza fue discretizado en intervalos de 5.000 mil toneladas y la probabilidad de observarlos se resume en la Tabla 46, como también la función de desempeño y la tasa de. Se observa que al implementar una veda por los próximos 10 años, la biomasa explotable del camarón nailon se incrementaría en 1,36 veces la biomasa actual. Una captura constante de 2500 t, implica una probabilidad de mantener la biomasa actual o levemente superior al actual (1,09 veces), y la tasa de explotación esperada sería del orden del 9%. Una captura del orden de 5.000 t anuales podría generar consecuencias no deseadas, que implican una reducción del orden del 79% de la biomasa actual y con una tasa de explotación del 22%. Niveles de captura de 7.500 ton anuales no son recomendables, ya que es probable que la tasa de explotación se incremente a niveles de entre 39 y 97% según la condición del stock, y una reducción significativa de la biomasa explotable.

Tabla 46. Tabla de decisión para las diferentes políticas de explotación definidas para el camarón nailon de la unidad de pesquería de la II-VIII Regiones. La función de desempeño es la razón entre la biomasa explotable al final de 10 años de proyección y la biomasa explotable del 2008.

	Estados de la naturaleza (Biomasa explotable 2008)				
					Valor
	<25000	25001-30000	30001-35000	>35000	Esperado
Política	0,035	0,607	0,345	0,012	1,00
		Función de deser	mpeño (razón B ₂₀₁₈ /B ₂₀₀₈)		
Veda	1,43	1,37	1,33	1,28	1,36
C = 2500 t	1,11	1,10	1,09	1,07	1,09
C = 5000 t	0,73	0,78	0,81	0,84	0,79
C = 7500 t	0,19	0,33	0,46	0,55	0,37
		T	1 1 4 17		
			de explotación		
Veda	0,00	0,00	0,00	0,00	0,00
C = 2500 t	0,09	0,08	0,07	0,06	0,08
C = 5000 t	0,29	0,23	0,20	0,17	0,22
C = 7500 t	0,97	0,79	0,54	0,39	0.71

Los perfiles de distribución acumulada de la función de desempeño en función de cada política de explotación, indican que niveles moderados de captura son posibles de implementar, y que deben ser inferiores a 3.000 toneladas (Fig. 47).

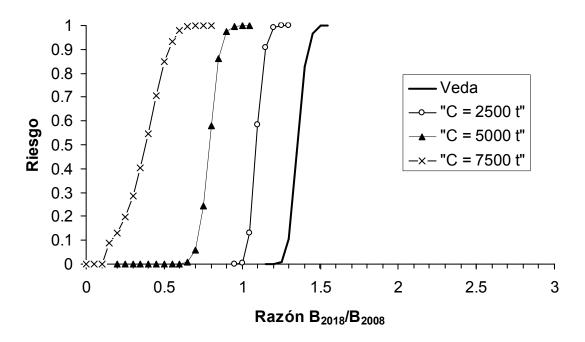


Fig. 47. Perfil de probabilidad acumulada de la función de desempeño según cuatro políticas de manejo de la pesquería de camarón nailon (II-VIII Regiones).

5. Discusión.

En este capítulo se incluye una discusión de los antecedentes disponibles de las evaluaciones directas de camarón nailon desde el año 2005 al año 2008. Al respecto, primero es necesario precisar que evaluaciones directas se han realizado en el año 2005 (FIP Nº 2005-08), 2006 (FIP Nº 2006-11) y el estudio actual (año 2008). En el año 2007 no se realizó evaluación directa de camarón nailon.

En el caso de la distribución espacial de la densidad poblacional de camarón nailon, de manera similar a lo observado en el año 2006 (FIP Nº 2006-11, Acuña *et al.*, 2007), ésta se presentó a la forma de conglomerados de abundancia relativamente continuos entre la IV y VI Regiones, a la forma de una delgada cinta, tal y como han señalado anteriormente diferentes autores. En las regiones II y III, sin embargo, la distribución de la abundancia de camarón nailon se mostró a la forma de focos o conglomerados de abundancia discontinuos, a diferencia de lo señalado por Arana *et al.* (2004, 2006), quienes manifestaron que de acuerdo a los resultados alcanzados por ellos, en el año 2004 y 2005, el camarón nailon se distribuyó de modo prácticamente continuo

desde el límite sur de la II Región y hasta la V Región, y que **sólo** la presencia de zonas no rastreables en la V y VII Regiones (Cañón Submarino de San Antonio, al sur de Constitución, etc.) permitió la conformación de conglomerados de abundancia entre la V y VIII Regiones.

En el presente estudio, el área de distribución de camarón nailon alcanzó a casi 3.128 km², lo que resulta ser 16,4% menor que el área de distribución estimada por Acuña *et al.* (2007), quienes estimaron un área de 3.740, km². El área de distribución de camarón en el presente estudio, contrastada con la estimación de Arana *et al.* (2006), fue casi 25% inferior. Sin embargo, se considera que el área de distribución del recurso estimada por estos últimos autores, esta sobreestimada, dada la continuidad espacial que mostraron los caladeros descritos. Los resultados mostrados por Acuña *et al.* (2006) y los encontrados en este estudio, indican que no existe una continuidad espacial marcada en la distribución del recurso camarón entre la II y VIII Región.

En el caso de la densidad poblacional promedio, Arana *et al.* (2006) señalan que, incluyendo los lances sin captura de camarón, ésta se presentó con valores mayores en la VI y VII Regiones, fenómeno que también se observó en el año 2006 (Acuña et al., 2007), mientras que, de acuerdo a los resultados encontrados en este estudio, en el año 2008 las mayores densidades se localizaron entre la IV y VII Regiones.

De la misma manera que en los años 2005 y 2006, hacia la zona norte (macrozona norte), la densidad poblacional decrece, alcanzando valores entre 6,895 (III Región) y 8,980 ton/km² (IV Región) en contraste a los valores registrados entre la V y VII Regiones, donde la densidad poblacional promedio fluctuó entre 8,633 (VI Región) y 13,065 ton/km² (V Región). En la VIII Región la densidad promedio de camarón nailon fluctuó entre 6,536 y 10,571 ton/km². Estos niveles de abundancia de camarón nailon encontrados en este estudio, son superiores a los observados por Arana et al. (2006) en el caso de los focos de abundancia de las Regiones II y III, donde la densidad poblacional promedio alcanzó a 4,285 ton/Km² y 4,629 ton/Km², respectivamente, así como respecto de aquellos identificados en el año 2006, donde la densidad promedio fluctuó entre 1,680 tons/km² y 6,304 tons/km².

El centro de gravedad de la densidad poblacional de camarón nailon (ton/km2) en el año 2008, se encontró en los 32°01'26,7"S (inercia: I = 7,314°S) y 71°55'38,4"W (I = 0,426°W), encontrándose levemente desplazado hacia el norte respecto del observado en el año 2006, y levemente desplazado hacia el sur respecto del año 2005.

Adicionalmente, junto con el desplazamiento del centro de gravedad de la densidad poblacional se observó un aumento en el grado de concentración de la densidad poblacional, medida a través del índice de Gini. En efecto, este índice, para toda el área de estudio, alcanzó a 0,210 en el año 2008, mientras que en el año 2005 y 2006 alcanzó a 0,382 y 0,295, respectivamente. Además, en el análisis de la evolución temporal del índice de Gini respecto de la biomasa de camarón nailon entre el año 2000 y 2008, exceptuando el año 2007, cuando no se realizó crucero de evaluación directa, se observó que entre los años 2000 y 2004, éste se mantuvo fluctuando alrededor de 0,410, no mostrando cambios notables respecto de las fluctuaciones de la biomasa. Sin embargo, a contar del año 2005, el índice de Gini, mostró una tendencia decreciente, contraria a la tendencia de las biomasas. Al respecto, la disminución del índice de Gini, y consecuentemente, el incremento del grado de concentración de la densidad de camarón nailon, se atribuye al aumento de la biomasa del recurso, sin un aumento del área de distribución, sino que por el contrario, ésta se redujo en cerca de 25% respecto del año 2005 y en casi 16% respecto de 2006.

La biomasa de camarón nailon estimada en el presente estudio mediante el enfoque geoestadístico alcanzó a 28.772,2 tons, valor que resulta 22,5% menor que el estimador de biomasa del año 2006 (Acuña et al., 2007). Esta reducción de la biomasa de camarón nailon puede ser atribuida en parte a la reducción cercana al 16% del área de distribución del recurso, aunque se debe tener en consideración que se está comparando con datos de dos años atrás, ya que durante el periodo inmediatamente anterior (2007) no se llevó a cabo una evaluación directa, lo que desde ya incorpora un nivel de incertidumbre a cualquier análisis.

En la comparación entre el 2008 y 2006, se observa que en las regiones III, VI y VIII las diferencias en biomasa son consideradas marginales, no superando la reducción el 3,2%, ni el aumento el 1,4%.

En la macrozona norte las diferencias más notables se encuentran en las regiones II y IV, aunque en realidad el aporte de la primera de éstas a la biomasa total es sólo del 1,3% en el 2006 y el 1,2% en el 2008. En consecuencia, en esta macrozona las diferencias se concentran en la IV Región, con un 32,9%. En la macrozona sur, que abarca las regiones V-VIII, la diferencia más notable se encuentra en la VII Región con un 29% que es mayor al porcentaje al considerar el toda el área de estudio y la V con un 17,4%.

Una de las explicaciones más evidentes para dar cuenta de las diferencias ha sido atribuida al hecho que los datos se hayan obtenido en periodos de muestreo distintos. Sin embargo, en la macrozona sur, que abarca las regiones V-VIII, no existen diferencias temporales en los muestreos en los estudios del 2006 y 2008, por lo tanto, la diferencia encontrada en particular en la VIIª región no pueden ser atribuidas a este motivo, mientras que en la V región se observa un desfase de algunos días en el periodo de muestreo, por lo cual no se podría descartar un efecto en los resultados. Otra potencial explicación que podría ser válida y común para estas las tres regiones donde se observaron descensos en la biomasa (IV, V y VII), es que son las que concentran la mayor parte de las cuotas de captura asignadas en esta macrozona en el periodo 2006-2008. En efecto, la IV región creció desde un 24,9 a un 38,9%, la V lo hizo desde un 11,9 a un 19,3%, mientras que la VII disminuyó desde 25,1 a 18,4 y volvió a aumentar hasta un 19,3%, su participación en la cuota global. Finalmente la IV región es aquella en que se produjo el mayor desfase entre dos periodos de muestreo, lo que se produjo debido a problemas administrativos que escaparon a la voluntad del Consultor y que no es del caso discutir en este documento técnico.

El análisis de similitud faunística basada en la CPUE de las principales especies en el crucero de evaluación directa de camarón nailon (año 2008) permitió determinar que sólo cuatro especies son las más importantes, a saber, langostino amarillo (*C. johni*), langostino colorado (*P. monodon*), merluza común (*M. gayi*) y lenguado de ojos grandes (*H. macrops*).

Se detectó la existencia de cinco ensambles faunísticos que mostraron marcada discontinuidad batimétrica con el primer límite entre 100 y 300 m de profundidad; el segundo límite se encuentra en el talud continental entre 250 y 450 m de profundidad. Al interior de estas dos zonas la

composición faunística varió gradualmente con la profundidad. En efecto, la fauna que forma parte de la plataforma y la del talud continental están conectadas por especies que no presentan rangos distribucionales batimétricos, como es el caso de *M. gayi, M. gaudichaudii, H. macrops* y *C. aconcagua*, coincidiendo con lo informado por Menares y Sepúlveda (2005).

Las especies de la fauna acompañante con mayor aporte a la varianza de la estructura comunitaria son *C. johni, P. monodon, M. gayi* y *H. macrops* y estuvieron presentes en todos los rangos latitudinal y batimétrico. En consecuencia, los ensambles presentaron similar rango de distribución, aunque formando conglomerados que se sobreponen parcialmente.

El número de especies que definen las similitudes entre grupos faunísticos es muy reducido, coincidiendo con lo reportado por Arancibia (1992) y Jung & Houde (2003). En el ensamble 1, que se encontró entre 100 y 300 m de profundidad, las especies más relevantes en términos de CPUE siempre fueron *P. monodon* y *C. johni*. En el ensamble 2, ubicado entre 200 y 400 m de profundidad. las especies más relevantes fueron *D. flavirostris* y *N. pulchella*.

El ensamble 3 se encontró entre 200 y 400 m de profundidad, siendo *C. johni* la especies más relevante. En el ensamble 4, que se encontró entre 250 y 450 m de profundidad, las especies más importantes son *C. porteri* y *H. macrops*. Por último, el ensamble 5 se ubicó entre 250 y 450 m de profundidad, siendo las especies más relevantes los peces *M. gayi* y *H. macrops*.

Por el contrario, el gradiente latitudinal no resultó determinante en las asociaciones faunísticas de la fauna acompañante de camarón nailon, pues la diferenciación de dichos grupos está estrecha y mayormente relacionada con el gradiente batimétrico, coincidiendo con Hecker (1990), quien señala que los cambios en la composición específica entre diferentes ensambles se deberían a la sustitución de las especies dominantes o subdominantes a través, justamente, del gradiente batimétrico.

Los antecedentes disponibles de estudios FIP que consideraron el análisis de la relación entre densidades, CPUE o CPUA de camarón nailon y variables oceanográficas, tanto en el caso de Silva (1996) como Arana *et al.* (2003), centraron su enfoque en características más propias de la

columna de agua, aunque fueran medidas a 10 m del fondo. Esto probablemente explique por qué los resultados de la relación entre las variables oceanográficas y el recurso no fueron los esperados o ésta es poco clara. En este estudio, el análisis se enfocó a considerar características de los sedimentos marinos, considerando que ya que se trata de organismos bentónicos, es lógico pensar en una relación con éstos, como ya ha sido demostrado por ej. para otros organismos bentónicos como los ostiones (Kostylev *et al.*, 2003).

Sobre el 70% de las observaciones (CPUE de camarón nailon, kg/hora arrastre) se encontraron sobre arena fina, seguido de un 25,7% sobre arena mediana, los dos tipos de sedimentos que concentran la mayoría de los lances, resultado similar al encontrado para las dos especies de langostinos por Acuña *et al.* (2009). Sin embargo, no se encontró un patrón de distribución claro y por lo tanto no se oberva una relación clara entre niveles de CPUE mayores en algunos de los tipos de sedimentos, probablemente debido a la presencia de altos valores extremos tanto en arena fina como mediana.

Se observa una recuperación de la biomasa explotable de camarón nailon desde el 2001 al 2008, con una reducción en la tasa de explotación anual que en el 2008 alcanza a cerca del 15%. El diagnóstico, indica además que la recuperación de la biomasa se debe a dos clases anuales abundantes que reclutaron en 1999 y 2003. La primera, fue importante en términos de detener la tendencia decreciente que se venía observando desde 1995. La segunda, en cambio, permitió el crecimiento de la biomasa explotable en los últimos tres años en concomitancia con niveles de captura que han sido regulados a través del establecimiento de las cuotas de captura anuales.

Aunque se observa una recuperación importante de la biomasa de camarón nailon, el stock aún no se consolida en términos de mantener niveles de captura superiores a las 5000 toneladas anuales durante los próximos 10 años. En efecto, el análisis de riesgo indica que capturas de 5000 toneladas podrían determinar tasas de explotación del orden del 20% que, aunque moderadas, sólo mantendrían la biomasa en el nivel que se observa en la actualidad. Una mejor chance de recuperación se podría lograr con capturas anuales menores a las 3 mil toneladas, permitiendo incrementar la biomasa actual y lograr tasas de explotación del orden del 10%.

6. Conclusiones.

- Entre las regiones II y III, la distribución de la abundancia de camarón nailon se mostró
 como focos o conglomerados de abundancia discontinuos. Entre la V y VIII Región, la
 distribución de la abundancia de camarón nailon se mostró discontinua, conformando focos
 de abundancia con niveles de densidad variable
- El área de distribución de la densidad local de camarón nailon calculada en este estudio alcanzó a 3.740,2 km², lo que resulta ser casi un 10% menos del área de distribución indicada por Arana et al. (2006), que alcanzó a 4.147 km².
- El centro de gravedad de la densidad poblacional de camarón nailon (ton/Km2) se encontró en los 32°26'S (inercia: I = 5,922°S) y 72° 00'W (I = 0,383°W) en el año 2006, desplazado respecto de la posición observada en el año 2005 (CG = 31°42'S, I = 4,626°S), y más aún de lo observado entre los años 1999 y 2004, donde el centro de gravedad promedio se encontró en los 30°41'S. Además del desplazamiento del centro de gravedad de la densidad poblacional se observó un aumento en el grado de concentración de la densidad poblacional, medida a través del índice de Gini, que para toda el área de estudio alcanzó 0,210.
- El análisis de la evolución temporal del índice de Gini respecto de la biomasa de camarón nailon entre el año 2000 y 2008, exceptuando el año 2007 cuando no se realizó cruceros de evaluación directas, mostró una tendencia decreciente, contraria a la tendencia de las biomasas.
- La biomasa de camarón nailon estimada en el presente estudio mediante el enfoque geoestadístico alcanzó a 28.772,2 tons, valor que resulta 22,5% menor que el estimador de biomasa del año 2006 (Acuña et al., 2007). Esta reducción de la biomasa de camarón nailon se atribuye en parte a la reducción cercana a 16% del área de distribución del recurso.

- La biomasa de camarón nailon estimada en el presente estudio mediante el enfoque geoestadístico alcanzó a 28.1772,7 tons, valor que resulta 22,5% menor que la estimación de biomasa del año 2006.
- El método de vecinos naturales utilizado para la estimación del área de los focos de abundancia de camarón nailon subestimó el área de distribución del recurso en 32,8% y la biomasa en 34,9%. Adicionalmente, el método no resuelve adecuadamente la estimación del área de focos pequeños, conformados por uno o dos lances, como tampoco en aquellos casos donde los lances se encuentren alineados latitudinal o longitudinalmente dentro del caladero o foco.
- Las especies más importante en la fauna acompañante en las capturas de camarón nailon (*H. reedi*) son langostino colorado (*P. monodon*), langostino amarillo (*C. johni*), lenguado de ojos grandes (*H. macrops*) y merluza común (*M. gayi*), considerando tanto la captura total (especie objetivo incluida) como respecto de la de la fauna acompañante (sin incluir a la especie objetivo) (Tabla 47). Latitudinalmente, las especies más importanted del bycatch son las mismas señaladas arriba, las que presentan alguna alternancia en el gradiente latitudinal (Tabla 48).

Tabla 47. Especies de mayor importancia relativa de la fauna acompañante respecto de la captura total. IRFA= índice de importancia relativa respecto a la captura total en peso de la fauna acompañante, IRRO= índice de importancia relativa respecto de la captura total en peso, incluyendo al recurso objetivo camarón nailon.

Nombre vernacular	Nombre científico	Acrónimo	CPUE total (ton/km²)	IRRO (%)	IRFA (%)	Lances positivos (%)
Langostino amarillo	Cervimunida johni	Cervjoh	3085,5	28,3	40,7	41,8
Langostino colorado	Pleuroncodes monodon	Pleumon	2888,9	26,5	38,1	23,3
Merluza común	Merluccius gayi	Merlgay	539,0	4,9	7,1	77,7
Lenguado de ojos grandes	Hippoglossina macrops	Нірртас	479,1	4,4	6,3	72,9

• Batimétricamente, las especies más importantes de la fauna acompañante fueron los langostinos colorado y amarillo que se encontraron preferentemente entre 100 y 300 m de profundidad (principalmente de la VII a VIII Regiones), mientras que en el rango

batimétrico entre 300 y 500 m de profundidad las especies más importantes son los peces lenguado de ojos grandes (*H. macrops*), merluza común (*M. gayi*) y pejerrata (*N. pulchella*) (Tabla 48).

Tabla 48. Especies de mayor importancia relativa de la fauna acompañante ordenadas por Región y profundidad (nombres de las especies señaladas por los acrónimos usados en todas las tablas del texto).

Región	Profundidad (m)					
	100 - 199	200 - 299	300 – 399	400 - 500		
II	Pleumon	Pleumon	Нірртас	Нірртас		
	Cervjoh	Cervjoh	Merlgay	Merlgay		
	Merlgay	Merlgay	Aculnig	Dosigig		
III	Pleumon	Cervjoh	Cervjoh	Merlgay		
	Cervjoh	Merlgay	Нірртас	Нірртас		
	Нірртас	Нірртас	Merlgay	Nezupul		
IV	Nezupul	Cervjoh	Нірртас	Нірртас		
	Dosigig	Pleumon	Merlgay	Epigcra		
	Нірртас	Merlgay	Epigcra	Merlgay		
V	Cervjoh	Нірртас	Nezupul	Нірртас		
	Epigcra	Merlgay	Нірртас	Merlgay		
	Нірртас	Epigcra	Merlgay	Centcre		
VI	Merlgay	Merlgay	Merlgay	Centnig		
	Нірртас	Diptfla	Нірртас	Nezupul		
	Diptfla	Nezupul	Dosigig	Aprinas		
VII	Pleumon	Cervjoh	Epigcra			
	Нірртас	Pleumon	Нірртас			
	Merlgay	Merlgay	Merlgay			
VIII	Pleumon	Cervjoh	Diptfla			
	Cervjoh	Nezupul	Nezupul			
	Нірртас	Merlgay	Нірртас			

• El 70% de las observaciones (CPUE de camarón nailon, kg/hora arrastre) se encontraron sobre arena fina y un 25,7% sobre arena mediana, los dos tipos de sedimentos que concentran la mayoría de los lances, resultado similar al encontrado para las dos especies de langostinos por Acuña *et al.* (2009). Sin embargo, no se oberva una relación clara entre niveles de CPUE mayores en algunos de los tipos de sedimentos, probablemente debido a la presencia de altos valores extremos tanto en arena fina como mediana.

- En el periodo 2001-2008, el camarón nailon ha exhibido una recuperación importante de la biomasa explotable desde cerca de 10 mil ton en el 2001 a cerca de 29 mil ton en el 2008.
 A su vez, la tasa de explotación presenta una disminución sostenida en igual periodo, alcanzando a cerca del 15% en el 2008.
- La recuperación de la biomasa se debe a dos clases anuales abundantes que reclutaron en 1999 y 2003, y a las regulaciones implementadas en términos de cuotas globales de captura que se han mantenido en torno de las 4,5 mil ton entre el 2001 y 2008.
- El estado de situación del recurso es de explotación plena, y alejado de una situación de sobrepesca.

7. Taller de difusión.

En el Punto 5.6 de los TBR se señala considerar la realización de un Taller de Difusión del Proyecto con la participación de científicos y técnicos relacionados con el tema, personas del sector extractivo y profesionales involucrados en el manejo de la pesquería. En respuesta a esta solicitud de la Secretaría Ejecutiva del FIP, se acordó realizar la Reunión Técnica para revisar diversos aspectos del proyecto FIP Nº 2008-17. En este evento se contó con la presencia de representantes de las instituciones participantes y representantes del sector pesquero artesanal de la IV y V Regiones, cuya lista de participantes se presenta en la Tabla 49.

Al estar aprobado el Informe de Avance, se programó la realización de un Taller de Difusión de los resultados obtenidos entre la II-VIII Regiones, contenido fundamental de dicho documento. En la Fig. 48 se presenta una copia de la invitación y díptico enviada a los representantes de las distintas instituciones gubernamentales, de investigación pesquera y empresarial.

Tabla 49. Lista de participantes al Taller Técnico de Difusión de Resultados del Proyecto FIP Nº 2008-17.

NOMBRE	INSTITUCIÓN	EMAIL
Leandro Sturla	Asociación Industriales Pesqueros	of.gerenciaaip@tie.cl
Andrés Quintanilla G.	Pesquera Quintero S.A.	andres.quintanilla@pesqueraquintero.cl
Manuel Andrade F.	Subpesca – Dirección Zonal III-IV	mandrade@subpesca.cl
Claudio Velásquez	Bracpesca S.A.	cvelasquez@comercialhym.cl
Osciel Velásquez	Bracpesca S.A.	desvel@gmail.com
Luis Cubillos	UdeC	lucubillos@udec.cl
Hugo Arancibia	UdeC	harancib@udec.cl
Héctor Tellez	Antartic Seafood	htellez@antarticseafood.cl
Enzo Acuña	UCN	eacuna@ucn.cl
Alex Cortés	UCN	acortesh@ucn.cl
Ximena Bennett	UCN	xbennett@ucn.cl

Listado de presentaciones.

Para iniciar la sesión de charlas, el Jefe del Proyecto FIP Nº 2008-17, Sr. Enzo Acuña da las palabras de bienvenida y agradecimiento por la asistencia a los participantes, comenzando a su vez con la introducción al Taller "Proyecto FIP Nº 2008-17: Evaluación directa de camarón nailon entre la II y VIII Regiones, año 2008". Posteriormente, la serie de exposiciones continuó como sigue:

1. La Introducción y el tema "Distribución espacial de los recursos" fue presentado por el Sr. Enzo Acuña, el cual expuso los resultados obtenidos en el Objetivo Específico 1: "Determinar la distribución espacial del recurso camarón nailon, en el área de estudio", considerando Región y Foco de Abundancia. Aquí se entregó información sobre las estructuras de tallas y porcentaje acumulado de las mismas en cada foco de abundancia, destacando especialmente la porción superior a 23 mm LC, medida considerada como un punto de referencia biológica relacionado con una talla de madurez promedio para la especie.

Fig. 48. Invitación a participar en el Taller de Difusión de resultados del proyecto FIP 2007-19 y díptico con las actividades, realizado en Coquimbo, el 8 de mayo de 2009.

- 2. El Sr. Enzo Acuña, a solicitud del Sr. Rubén Alarcón, presentó el tema "Métodos de análisis de biomasa y abundancia", en el cual se detalló el análisis y resultados obtenidos del Objetivo Específico 2: "Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del recurso en el área de estudio, y por región y focos de abundancia, según corresponda", analizando a su vez, la importancia de la apertura de punta de alas (APA) en la estimación de abundancia y biomasa. En particular, se destacó el tema de la duración de los lances y el comienzo de los mismos, el que en el caso de este estudio es determinado "on line" a través de uno de los sensores del equipo NETMIND, lo que permite trabajar con el tiempo efectivo de arrastre desde que la red está efectivamente en el fondo.
- 3. El expositor, Sr. Hugo Arancibia presentó el tema "Fauna acompañante y predación por merluza común", en el cual se presentó el análisis del Objetivo Específico 4: "Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de estos recursos durante los cruceros de evaluación". En forma adicional a los antecedentes tradicionales sobre la fauna acompañante, se presentaron resultados de un análisis de superposición espacial entre la merluza común, uno de los principales integrantes de la fauna acompañante y las dos especies de langostinos y camarón nailon.
- 4. El Sr. Luis Cubillos, presentó un completo análisis correspondiente al Objetivo Específico 5: "Analizar la situación actual del recurso en la zona de estudio, considerando los antecedentes de la pesquería y los resultados del proyecto".
- 5. Finalmente, se realizó una mesa redonda donde se realizaron comentarios sobre lo anteriormente expuesto con la participación de los armadores pesqueros artesanales e industriales. Cabe rescatar de las palabras de los asistentes, que el interés de los participantes estuvo centrado en requerir mayor detalle de información sobre la distribución espacial del camarón nailon como también en forma comparativa con aquella de los langostinos dentro y fuera del ARPA, antecedentes más detallados sobre la fauna acompañante, en particular sobre la importancia de la merluza común y los porcentajes de ésta y otras especies y la variación espacio temporal de los niveles de biomasa en las

distintas Regiones. También se plantearon problemas que inciden sobre el uso de los recursos, como por ej. las modificaciones en el uso y aprovechamiento de las cuotas debidos a problemas a veces transitorios como la demanda por los productos, los precios internacionales, en concreto se planteó que debieran incorporarse estudios que integren variables económicas y sociales para la administración de las pesquerías.

6. Un punto especial y general planteado con respecto a los Talleres de Difusión, se refiere a la asistencia de personeros de la Subsecretaría de Pesca y del FIP, aunque se reconoció que con el nuevo status que han adquirido los Directores Zonales y los Consejos Zonales de Pesca, se podría ir solucionando este tema.

8. Referencias Bibliográficas.

- Acuña, E & H. Arancibia, 1996. Evaluación directa del stock de camarón nailon (*Heterocarpus reedi*) por el método de área barrida, en la zona de operación de la flota arrastrera de la Regiones II y IV. Informe final Proyecto UCN, INPESCA, Empresas Pesqueras Coquimbo y Caldera. 75 pp.
- Acuña, E., & H. Arancibia, 2001. Evaluación directa de camarón nailon entre la II y VIII Regiones. Informes Técnicos FIP. FIP/IT N°2001-05, .
- Acuña, E., E. Pérez & M.T. González. 2000b. Monitoreo de la Pesquería de Crustáceos realizada por la flota de la IV Región, 1999. Informe final, 76 pp.
- Acuña, E., E.P. Pérez & M.T. González. 1999. Monitoreo de la pesquería de crustáceos realizada por la flota de la IV Región. Informe final, 80 pp.
- Acuña, E., G. Conan, L. Cid, R. Alarcón y L. Cubillos. 2003. Evaluación directa de langostino colorado entre la III y IV regiones, año 2003. Informes Técnicos FIP. FIP/IT Nº 2003-03, 141 pp.
- Acuña, E., González, M.T., González, M. 2003. Pesquerías de langostinos y camarón nailon en el norte de Chile. In: Actividad pesquera y de acuicultura en Chile, E. Yánez (Ed.), Escuela de Ciencias del Mar, UCV, p. 263-287.
- Acuña, E., H. Arancibia y R. Alarcón. 2002b. Monitoreo y Evaluación de la pesquería de langostino amarillo *Cervimunida johni* Porter, 1903, en la III y IV Región; Noviembrediciembre 2001. Informe Final, Convenio ARPESCA Depto. Biología Marina. Universidad Católica del Norte Sede Coquimbo, 48 p.
- Acuña, E., H. Arancibia, A. Mujica, K. Brokordt & C. Gaymer. 1995. Estudio biológico-pesquero del langostino amarillo (*Cervimunida johni*) en la III y IV Región, mediante el uso de la flota arrastrera con base en Coquimbo. Informe Final Proyecto U. C. del Norte-Sede Coquimbo/Instituto de Investigación Pesquera VIII Región/Empresas Pesqueras de Coquimbo, 107 págs. + 2 anexos.
- Acuña, E., H. Arancibia, A. Mujica, L. Cid & R. Roa. 1997a. Análisis de la pesquería y Evaluación indirecta del stock de langostino amarillo en la III y IV Regiones. Informes FIP. FIP/IT Nº 96-08, 153 p.
- Acuña, E., H. Arancibia, A. Mujica, L. Cid, R. Roa & F. Winkler 1997b. Análisis de la pesquería y evaluación indirecta del stock de camarón nailon (III y VIII Regiones). Informes FIP, FIP/IT N° 95-06, 211 p.
- Acuña, E., M. Andrade, A. Bodini y X. Bennett. 2002a. Monitoreo de la pesca de langostino colorado (*Pleuroncodes monodon*) en la IV Región. Informe Final Pesca de Investigación

- resoluciones Nº 850, 1.022 y 1.795. Depto. Biología Marina. Universidad Católica del Norte Sede Coquimbo, 32 p.
- Acuña, E., M. Berríos, L. Cid, J. Moraga, A. Mujica, E. Pérez & R. Alarcón. 2000b. Evaluación directa de camarón nailon entre la II y VIII Regiones, 1999. Informes FIP. FIP/IT Nº 99-08, 208 p.
- Acuña, E., R. Alarcón, H. Arancibia, L. Cid, A. Cortés, L. Cubillos, R. León y S. Neira. 2005a. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII regiones, año 2004. Informes Técnicos FIP, FIP/IT Nº 2004-11, 398 pp.
- Acuña, E., R. Alarcón, L. Cid, H. Arancibia, L. Cubillos y A. Cortés. 2006. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, año 2005. Informe Final. Proyecto FIP Nº 2005-09.
- Acuña, E., J. C. Villarroel, A. Cortés, R. Alarcón, L. Cid, H. Arancibia, R. León, L. Cubillos, R. Bahamonde, C. Canales, C. Montenegro, B. Leiva & F. Contreras. 2007. Evaluación directa de camaron nailon entre la II y VIII Regiones, año 2006. Informes Técnicos FIP. FIP/IT Nº 2006-11, 275 pp.
- Alverson, D.L. & W.T. Pereyra (1969) Demersal fish explorations in the northeastern Pacific Ocean. An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Bd. Canada, 26: 1985-2001.
- Arana, P., M. Ahumada, A. Guerrero, T. Melo, D. Queirolo, M.A. Barbieri, R. Bahamonde, C. Canales y J.C. Quiroz. 2006. Evaluación directa de camarón nailon y gamba entre a II y VIII Regiones, año 2005. Informes Técnicos FIP. FIP/IT Nº 2005-08, 352 p.
- Arancibia, H., Catrilao, M., Farías, B. 1998: Evaluación de la demanda de alimento en merluza común y análisis de su impacto en pre-reclutas. Informes Técnicos FIP. FIP/ IT Nº 95-17, 93 p.
- Arancibia, H., L. Cubillos, E. Acuña. 2005. Annual growth and age composition of the squat lobster *Cervimunida johni* off northern-central Chile (1996-97). Scientia Marina 69(1): 113-122.
- Beyer, J. 1987. On length-weight relationship. Part. I. Computing the mean weight of the fish in a given length class. Fishbyte 5(1): 12 14.
- Beyer, J. y Sparre, P. 1983. *Modelling exploited fish stocks. En S.E. Jørgensen*, ed. *Application of ecological modelling in environmental management. Part A.*, pp. 485-582. Amsterdam, Elsevier Scientific Publishing Co.
- Bez, N. & J. Rivoirard. 2001. Transitive geostatistics to characterize spatial aggregations with diffuse limits: an application on mackerel ichtyoplankton. Fish. Res. 50: 41–58.

- Bez, N., 2002. Global fish abundance estimation from regular sampling: the geostatistical transitive method. Canadian Journal Fisheries and Aquatic Science. 59: 1921-1931.
- Björnsson, H., y Th. Sigurdsson. 2003. Assessment of golden redfish (Sebastes marinus L.) in Iceland waters. Scientia Marina 67(Suppl. 1):301-314.
- Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr., 27: 325-349.
- Breen, P.A., Kim, S.W., y Andrew, N.L. 2003. A length-based Bayesian stock assessment model for the New Zealand abalone *Haliotis iris*. Marine and Freshwater Research 54:619-634.
- Brown, D.G., P. Goovaerts, A. Burnicki & M.-Y. Li, 2002. Stochastics simulation of land-cover changes using geostatistics and generalized additive models. Photogrametric Enginneering & Remote Sensing, 68:1051-1061.
- Canales, C. y C. Montenegro. 2004. Investigación y Evaluación Captura Total Permisible Langostino Colorado, 2004. Informe Final. Subsecretaría de Pesca-Instituto de Fomento Pesquero, 33 pp.
- Canales, C., Barbieri, M.A., Bahamonde, R., Leiva, B., Arana, P., Guerrero, A., Ahumada, M., Melo, T., Queirolo, D., Hurtado, C., Galvez, P., 2003. Determinación de biomasa y abundancia de los recursos objetivos. En: Evaluación directa langostino colorado y langostino amarillo entre la II y VIII regiones, año 2002. Informes Técnicos FIP. FIP/IT Nº 2002-06, pp.
- Canales, C., J.C. Quiroz, y C. Montenegro. 2003. Investigación y evaluación captura total permisible camarón nailon, 2003. Informe Final, Subsecretaría de Pesca, Instituto de Fomento Pesquero, 25 p. + Anexos.
- Canales, C., M.A. Barbieri, R. Bahamonde, B. Leiva, P. Arana, S. Palma y T. Melo, 2002. Evaluación directa de langostino colorado y langostino amarillo entre la II y VIII Regiones, Año 2001. Informes Técnicos FIP. FIP/IT Nº 2001-06, 202 p. + Figs. y Anexos.
- Carrasco, F. D., V. A. Gallardo & M. Baltazar., 1999. The estructure of the benthic macrofauna collected across a transect at the central Chile shelf and relationships with giant sulfur bacteria *Thioploca* spp mats. Cah. Biol. Mar., 40: 195-202.
- Chapman, M. G., A. J. Underwood, 1999. Ecological patterns in multivariate assembalges: information and interpretation of negative values in ANOSIM tests. Mar. Ecol. Prog. Ser., 180:257-265.
- Chen, Y., Breen, P.A., Andrew, N.L. 2000. Impacts of ouliers and mis-specification of priors on Bayesian fisheries-stock assessment. Can. J. Fish. Aquat. Sci. 57:2293-2305.
- Clarcke, K. R., 1993. Non-parametric multivariate analises of change in community structure. Aust. J. Ecol., 18: 117-143.

- Clarke K.R. & R.H. Green, 1988. Statistical desing and analisys for a biological effects study. Mar Ecol. Prog. Ser., 92: 205-219.
- Clarke, K. R. & R. M. Warwick, 1994. Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory, 144 pp.
- Cochran, W.G. (1977) Sampling Techniques. 3rd. Ed. John Wiley and Sons, New York.
- Cressie, N.A.C. (1993) Statistics for spatial data. Wiley, New York.
- Cubillos, L.A., H. Rebolledo, y A. Hernández. 2003a. Prey composition and estimation of Q/B for the Chilean hake, *Merluccius gayi* (Gadiformes-Merluccidae), in the central-south area off Chile (34°-40°S). Arch. Fish. Mar. Res. 50(3):271-286.
- Deutsch, C.V. & A.G. Journel (1998) GSLIB: Geostatistical Software Library and User's Guide. 2nd Ed. Oxford University Press, New York. 369 p.
- Efron B. & R. Tibshirani, 1993. An introduction to the bootstrap. Monographs on Statistics and Applied probability 57, Chapman & Hall, 436 pp.
- Efron, B. 1982. The jacknife, the bootstrap and other resampling plans. SIAM Monograph N° 38.
- Escuela de Ciencias del Mar. (2000a). Evaluación directa de langostino amarillo entre la III y VIII Regiones, 1999. Informes Técnicos FIP. FIP/IT N° 99-09, 288 p.
- Escuela de Ciencias del Mar. (2000b). Evaluación directa de camarón nailon, langostino amarillo y langostino colorado, Año 2000. Informes Técnicos FIP. FIP/IT N° 2000-05: 315 p.
- FAO. 1996. FAO Fishing Technology Service. Fishing operations. FAO Technical Guidelines for Responsible Fisheries. No. 1. Rome, FAO. 1996. 26p. 6 annexes.
- Fennessy, S. T., C. Villacastin, J. G. Field, 1994. Distribution and seasonality of icthyofauna associated with commercial praw trawl catches on the Tugela bank of Natal, South Africa. Fish. Res. 20:263-282.
- Finney, D.J. 1941. On the distribution of a variate whose logarithm is normally distributed. Journal of the Royal Statistical Society, Supplement, 7: 155–161.
- Frøysa, K.G., B. Bogstad, D.W. Skagen. 2002. Fleksibet an age length structured fish stock assessment model. Fisheries Research 55:87-101.
- Fu, C., Quinn II, T.J. 2000. Estimability of natural mortality and other population parameter in a length-based model: Pandalus borealis in Kachemak Bay, Alaska. Can. J. Fish. Aquat. Sci. 57:2420-2432.

- Fu, C., Quinn II, T.J., Shirley, T.C. 2001. The role of sex chage, growth, and mortality in Pandalus population dynamics and management. ICES Journal of Marine Science 58(3):607-621.
- Fu, C., T.J. Quinn II, y M. Adkison. 1999. Retrospective projection using Monte Carlo simulation: an application of a length-based model to Kachemak Bay pink shrimp. Ecosystem Approaches for Fisheries Management, University of Alaska Sea Grant College Program, AK-SG-99-01, Fairbanks, pp. 59-77.
- Gelman, A., J.B. Carlin, H.S. Stern, y D.B. Rubin. 1995. Bayesian data analysis. Chapman and Hall, New York.
- Gislason, H. 1999. Single and multispecies reference points for Baltic fish stocks. ICES J. Mar. Sci., 56:571-583.
- Gislason, H. and Sparre, P. 1987. Some theoretical aspects of the implementation of multispecies virtual population analysis in ICES. ICES CM 1987/G:51.
- Goovaerts, P. & A.G. Journel, 1995. Integrating soil map information in modeling conditional probability distribution function. Mathematical Geology, 46:397-414.
- Goovaerts, P., R. Webster & J.P. Duobois, 1997. Assessing the risk of soil contamination in the Swiss Jura using indicator geoestatistics. Environmental and Ecological Statistics, 4: 31-48.
- Grosslein, M.D. 1971. Some observations on accuracy of abundance indices derived from research vessel surveys. International Commission for the Northwest Atlantic Fisheries Redbook, Part III: 249–266.
- Gulland, J.A. 1965. Estimation of mortality rates. Annex to Rep. Arctic. Fish. Working Group. ICES, CM, 1965. (3): 9p.
- Hilborn, R., M. Maunder, A. Parma, B. Ernst, J. Payne, y P. Starr. 2000. Coleraine: a generalized age structured stock assessment model. 55 p.
- Hobday, D., A.E. Punt. 2001. Size-structured population modelling, and risk assessment of the Victorian southern rock lobster, Jasus edwarsii, fishery. Marine and Freshwater Research 52:1495-1507.
- Isaaks, E.H. & R.M. Srivastava (1989) An Introduction to Applied Geostatistics. Oxford University Press, New York. 561 p.
- Jaksic, F. & M. Delibes, 1987. A comparative analysis of food-niche relationships and trophic guild structure in tow assemblages of vertebrate predator differing in species richness: causes, correlations and consequences. Oecología 71: 461-472.
- Journel, A.G. & C.J. Huijbregts (1978) Mining geostatistics. Academic Press, London.

- Journel, A.G., 1983. Non-parametric estimation of spatial distribution. Mathematical Geology, 15:445-468.
- Kraufvelin, P, 1999. Baltic hard bottom mesocosms unplugged: replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. J. Exp. Mar. Biol. Ecol., 240: 229-258.
- Kyriakidis, P.C. & J.L. Dungan, 2001. A geoestatistical approach for mapping thematic classification accuracy and evaluating the impact of inaccurate spatial data on ecological model predictions. Environmental and Ecological Statistics, 8: 311-330.
- Land, C.E. 1975. Tables of confidence limits for linear functions of the normal mean and variance. Sel. Tables Math. Stat. 3:385-419.
- Latour, R.J., Brush, M.J., Bonzek, C.F. 2003. Toward ecosystem-based fisheries management: strategies for multispecies modeling and associated data requirements. Fisheries 28(9):10-22.
- Livingston, P.A., Jurado-Molina, J., 2000. A multispecies virtual population análisis of the eastern Bering Sea. ICES Journal of Marine Science, 57:294-299.
- Luenberger, D. 1969. Optimization by vector space method. Wile, New York, 269p.
- Magnusson, K. 1995. An overview of the multispecies VPA theory and applications. Reviews in Fish Biology and Fisheries, 5: 195-212.
- Matheron, G. 1971. La théorie des variables regionalices et ses applications. Fasc. 5 Ecole Nat. Sup. des Mines. Paris.
- McConnaughey, R.A. & P.A. Conquest. 1993. Trawl survey estimation using a comparative approach based on lognormal theory. Fish. Bull. (U.S.) 91:107-118.
- Myers, R.A., & P. Pepin. 1990. The robustness of lognormal-based estimators of abundance. Biometrics, 46: 1185–1192.
- Otter Research Ltd. 1999. AD Model Builder documentation on line. http://otter-rsch.com/admodel.htm.
- Páramo, J. & R. Roa, 2003. Acoustic-geostatistical assessment and habitat—abundante relations of small pelagic fish from the Colombian Caribbean. Fisheries Research, 60: 309–319.
- Pennington, M. 1983. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39:281-286.
- Pennington, M. 1986. Some statistical techniques for estimating abundance indices from trawl surveys. Fish. Bull. 84:519-525.

- Pennington, M. 1996. Estimating the mean and variance from highly skewed marine data. Fishery Bulletin, US, 47: 1623–1624.
- Pérez, E. P. (1996). Análisis de la pesquería de *Mesodesma donacium* en el banco de Peñuelas (Chile, IV región), bajo condiciones de riesgo e incertidumbre. Tesis de Maestría. CINVESTAV-IPN. Mérida, Yucatán. Mexico. 82pp.
- Petitgas, P. & T. Lafont, 1997. EVA2: Estimation variance. Version 2. A geostatistical software on Windows 95 for the precision of fish stock assessment surveys. ICES CM 97/Y:22. 22 pp.
- Petitgas, P., 1993. Geostatistics for fish stock assessments: a review and an acoustic application. ICES Journal Marine Science, 50: 258-298.
- Petitgas, P., 1996. Geostatistics and their applications to fisheries survey data. In: Megrey, A., and E. Moskness (Eds.) Computers in Fisheries Research. Chapman & Hall, London. pp. 113-142.
- Pianka, E., 1977. The structure of lizard communities. An. Rev. Ecol. Sys. 4: 53-74.
- Punt, A. 2003. The performance of a size-structured stock assessment method in the face of spatial heterogeneity in growth. Fisheries Research 65:391-409.
- Punt, A.E., R. Hilborn. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Reviews in Fish Biology and Fisheries 7, 35-63.
- Punt, A.E., R.B. Kennedy, y S. Frusher. 1997. Estimating the size-transition matrix for Tasmanian rock lobster, Jasus edwarsii. Marine and Freshawater Research 48:981-992.
- Punt, A.E., y R.B. Kennedy. 1997. Population modelling of Tasmanian rock lobster, *Jasus edwarsii*, resourcess. Marine and Freshawater Research 48:967-980.
- Quinn II, T.J., C.T. Turnbull y C. Fu. 1998. A length-based population model for hard-to-age invertebrate populations. In: F. Funk, T.J. Quinn II, J.N. Ianelli, J.E. Powers, J.F. Schweigert, P.J. Sullivan, y C.-I. Zhang (eds.), Fishery stock assessment models. University of Alaska Sea Grant, AK-SG-98-01, Fairbanks, pp. 531-556.
- Quinn II, T.J., y R.B. Deriso. 1999. Quantitative fish dynamics. Oxford University Press, New York
- Quiroz, J. C., C. Canales y C. Montenegro. 2004. Investigación y Evaluación Captura Total Permisible Langostino Amarillo, 2004. Informe Final. Subsecretaría de Pesca-Instituto de Fomento Pesquero, 58 pp + anexo.
- Restrepo, V.R. & R.A. Watson. 1991. An approach to modeling crustacean egg-bearing fractions as a function of size and season. Can. J. Fish. Aquat. Sci., 48: 1431-1436.

- Ribeiro, Jr., P.J. & P.J. Diggle, 2001. geoR: A package for geostatistical análisis. R-NEWS, Vol. 1, N° 2, 15-18.
- Rivoirard, J., Simmonds, J., Foote, K., Fernandes, P., and Bez, N. 2000. Geostatistics for estimating fish abundance. Blackwell Sciences, Oxford.
- Roa, R. & R. Bahamonde. 1993. Growth and expansion of an exploited population of the squat lobster (*Pleuroncodes monodon*) after 3 years without harvesting. Fish. Res., 18: 305-319.
- Roa, R. 1993. Annual growth and maturity function of the squat lobster Pleuroncodes monodon in central Chile. Mar. Ecol. Prog. Ser. 97, 157-166.
- Roa, R., B. Ernst. 1996. Age structure, annual growth, and variance of size-at-age of the shrimp Heterocarpus redii. Mar. Ecol. Prog. Ser. 137:59-70.
- Roa, R., F. Tapia, L. Cid, R. Quiñones, B. Ernst, D. Figueroa, H. Arancibia, R. Galleguillos & M. Retamal, 1997. Evaluación directa del stock de langostino colorado en la zona centro-sur. Informes Técnicos FIP, FIP/IT N° 96-23, 139 p.
- Roa, R., F. Tapia. 1998. Spatial differences in growth and sexual maturity between branches of a large population of the squat lobster *Pleuroncodes monodon*. Mar. Ecol. Prog. Ser. 167, 185-196.
- Roa, R., L. Cid, F. Tapia, R. Quiñones, H. Arancibia, D. Figueroa & I. Lépez, 1998. Evaluación directa del stock de langostino amarillo en el litoral de la V a VIII Regiones. Informes TFIP, FIP/IT N° 97-23, 123 pp.
- Roa, R., R. Quiñones & H. Arancibia, 1997. Evaluación directa del stock de langostino colorado en la zona centro-sur. Informe Final Proyecto FIP. 139 pp + figuras y anexos.
- Roa, R., R. Quiñones, V.A. Gallardo, B. Ernst, I. Payá, I. Campodónico & V. Alegría, 1997. "Distribución espacial de la estructura poblacional del langostino colorado *Pleuroncodes monodon* en la zona del cañon del Bio-Bío". Informe Final Proyecto FONDECYT-1950090.
- Saito H. & P. Goovaerts 2002. Accounting for measurement error in uncertainty modeling and decision-making using indicator kriging and p-eld simulation: application to a dioxin contaminated site. Environmetrics, 13: 555-567.
- Seber, G.A.F. y C.J. Wild.1989. Nonlinear Regression. John Wiley & Sons.
- Sissenwine, M. P., and Daan, N. 1991. An overview of multispecies models relevant to management of living resources. ICES mar. Sci. Symp., 193: 6-11.
- Smith, S.J. 1988. Evaluating the efficiency of the Δ -distribution mean estimator. Biometrics, 44: 485–493.

- Sokal, R. R. & F. J. Rohlf (1981). Biometry. W. H. Freeman and Co., San Francisco, California, 859 pp.
- Sparre, P. and Venema, S.C. 1997. FAO 306. Introduction to tropical fish stock assessment. Part 1. Manual. FAO Fisheries Technical Paper. N° 306.1, Rev. 2. Rome.
- Sullivan, P. J., H. L. Lai, and V. F. Gallucci. 1990. A catch-at-length analysis that incorporates a stochastic model of growth. Can. J. Fish. Aquat. Sci. 47:184-198.
- Syrjala, S. E. 2000. Critique on the use of the delta distribution for the analysis of trawl survey data. ICES Journal of Marine Science, 57: 831–842.
- Troynikov, V.S. 1998. Probability density functions useful for parametrization of heterogeneity in growth and allometry data. Bulletin of Mathematical Biology 60:1099-1122.
- Tsou, T.-S., Collie, J.S. 2001. Estimating predation mortality in the Georges Bank fish community. Can. J. Fish. Aquat. Sci., 58:908-922.
- Velasco, A.; Wolff, M. (2000) Ictiofauna juvenil de fondos blandos durante las transición de "secas" a lluvias en la costa Pacifica de Colombia. Rev. Biol. Trop 48(1): 213-228 pp.
- Warwick, R. M., A. J. McEvoy & S. F. Thrush (1997). The influence of *Atrina zelandica* Gray on meiobenthic nematode diversity and community structure. J. Exp. Mar. Biol. Ecol., 214: 231-247.
- Wilkinson, L. 1988. SYSTAT: The system for statistic. SYSTAT Inc., Evanston, IL.

9. Anexos

ANEXOS

ANEXO 1

FECHAS Y LUGARES GEOGRÁFICOS DE LOS MUESTREOS

Anexo 1. Fechas y lugares geográficos de los muestreos.

FECHA	NAVE	REGIÓN	PUERTO BASE
21/06/2008	Foche	4	Coquimbo
22/06/2008	Foche	4	Coquimbo
23/06/2008	Foche	4	Coquimbo
24/06/2008	Foche	4	Coquimbo
25/06/2008	Foche	4	Coquimbo
26/06/2008	Foche	4	Coquimbo
27/06/2008	Foche	4	Coquimbo
28/06/2008	Foche	4	Coquimbo
29/06/2008	Foche	4	Coquimbo
01/07/2008	Foche	4	Coquimbo
03/07/2008	Foche	4	Coquimbo
04/07/2008	Foche	4	Coquimbo
05/07/2008	Foche	4	Coquimbo
06/07/2008	Foche	4	•
08/07/2008	Foche	4	Coquimbo
	Foche	4	Coquimbo
09/07/2008			Coquimbo
10/07/2008	Foche	4	Coquimbo
11/07/2008	Foche	4	Coquimbo
12/07/2008	Foche	4	Coquimbo
13/07/2008	Foche	4	Coquimbo
14/07/2008	Foche	4	Coquimbo
15/07/2008	Foche	4	Coquimbo
16/07/2008	Foche	4	Coquimbo
17/07/2008	Foche	4	Coquimbo
01/08/2008	Isabel-S	3	Caldera
02/08/2008	Isabel-S	3	Caldera
03/08/2008	Isabel-S	3	Caldera
14/08/2008	Isabel-S	4	Coquimbo
15/08/2008	Isabel-S	4	Coquimbo
20/08/2008	Isabel-S	3	Caldera
21/08/2008	Isabel-S	3	Caldera
22/08/2008	Isabel-S	3	Caldera
23/08/2008	Isabel-S	3	Caldera
25/08/2008	Isabel-S	2	Caldera
26/08/2008	Isabel-S	2	Caldera
27/08/2008	Isabel-S	3	Caldera
28/08/2008	Isabel-S	3	Caldera
30/08/2008	Isabel-S	3	Caldera
31/08/2008	Isabel-S	3	Caldera
09/09/2008	Isabel-S	4	Coquimbo
21/09/2008	Isabel-S	4	Coquimbo
22/09/2008	Isabel-S	4	Coquimbo
01/10/2008	Foche	5	San Antonio
21/10/2008	Foche	5	San Antonio
22/10/2008	Foche	5	San Antonio
23/10/2008	Foche	5	San Antonio
25/10/2008	Foche	5	San Antonio

26/10/2008	Foche	5	San Antonio
27/10/2008	Foche	5	San Antonio
29/10/2008	Foche	5	San Antonio
30/10/2008	Foche	5	San Antonio
31/10/2008	Foche	6	San Antonio
01/11/2008	Foche	6	San Antonio
04/11/2008	Foche	6	San Antonio
05/11/2008	Foche	6	San Antonio
06/11/2008	Foche	6	San Antonio
10/11/2008	Foche	6	San Antonio
11/11/2008	Foche	7	Talcahuano
12/11/2008	Foche	7	Talcahuano
15/11/2008	Foche	7	Talcahuano
16/11/2008	Foche	7	Talcahuano
17/11/2008	Foche	7	Talcahuano
19/11/2008	Foche	7	Talcahuano
20/11/2008	Foche	7	Talcahuano
22/11/2008	Foche	8	Talcahuano
23/11/2008	Foche	8	Talcahuano
24/11/2008	Foche	8	Talcahuano
25/11/2008	Foche	8	Talcahuano
26/11/2008	Foche	7	Talcahuano
27/11/2008	Foche	7	Talcahuano
28/11/2008	Foche	7	Talcahuano
29/11/2008	Foche	7	Talcahuano
30/11/2008	Foche	7	Talcahuano
02/12/2008	Foche	5	San Antonio
03/12/2008	Isabel-S	2	Caldera
04/12/2008	Isabel-S	3	Caldera
06/12/2008	Isabel-S	3	Caldera
07/12/2008	Isabel-S	3	Caldera
08/12/2008	Isabel-S	3	Caldera
09/12/2008	Isabel-S	4	Coquimbo
10/12/2008	Isabel-S	4	Coquimbo
11/12/2008	Foche	3	Caldera
13/12/2008	Isabel-S	4	Coquimbo
14/12/2008	Isabel-S	4	Coquimbo
18/12/2008	Isabel-S	4	Coquimbo
23/12/2008	Isabel-S	4	Coquimbo
26/12/2008	Isabel-S	4	Coquimbo
27/12/2008	Isabel-S	4	Coquimbo
28/12/2008	Isabel-S	4	Coquimbo
29/12/2008	Isabel-S	4	Coquimbo
30/12/2008	Isabel-S	4	Coquimbo

Anexo 2. Registros de posición, distancia lineal recorrida, área barrida, abertura de punta de alas, captura y cpua de camarón nailon.

ANEXO 2

REGISTROS DE POSICIÓN, DISTANCIA LINEAL RECORRIDA, ÁREA BARRIDA, ABERTURA DE PUNTA DE ALAS, CAPTURA Y CPUA DE CAMARÓN NAILON

Anexo 2. Registros de posición media del lance, profundidad media (Prof., m), distancia lineal recorrida (DR, Km), área barrida (AB, Km²), capturas (Capt., Kg) y CPUA (ton/Km²) de camarón nailón. IDP: identificador de la base de datos del proyecto.

IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
13	-25,51902	-70,70881	355,0	0,926	0,01344	0,0	0,00000
14	-25,52577	-70,74283	403,0	0,972	0,01452	162,0	11,16048
15	-25,52868	-70,76007	408,0	0,926	0,01401	86,9	6,20206
16	-25,72227	-70,76098	343,0	0,880	0,01298	52,3	4,03399
17	-25,72259	-70,77782	349,0	0,926	0,01345	360,0	26,76381
18	-25,72218	-70,79472	357,0	0,972	0,01390	285,4	20,53084
19	-25,72228	-70,81171	367,0	0,880	0,01294	180,0	13,91014
20	-25,85730	-70,79453	323,0	0,926	0,01349	0,0	0,00000
81	-28,25153	-71,27658	339,0	0,972	0,01428	116,6	8,16527
82	-28,25550	-71,27992	400,0	0,926	0,01403	182,8	13,03163
83	-28,26018	-71,28750	415,0	0,880	0,01349	180,0	13,34124
84	-28,41786	-71,29658	343,0	0,972	0,01393	52,5	3,77230
85	-28,38351	-71,30404	359,0	0,926	0,01376	94,1	6,83407
86	-28,38192	-71,33053	371,0	0,972	0,01422	72,0	5,06201
87	-28,49589	-71,33013	320,0	0,926	0,01422	131,7	9,76059
88	-28,51194	-71,32304	364,0	0,880	0,01336	71,4	5,38768
89	-28,50191	-71,33425	419,0	0,833	0,01320	108,0	8,33681
90	-28,64613	-71,41329	445,0	0,833	0,01273	105,6	7,39237
91	-28,65798	-71,42324	383,0	0,920	0,01429	107,3	8,11535
92	-28,70266	-71,42552	325,0	0,833	0,01323	180,0	14,40449
98	-28,88739	-71,53917	358,0	0,833	0,01230	71,5	5,38994
142	-29,69629	-71,33917	232,0	0,880	0,01320	853,6	68,19823
143	-29,69629	-71,37808	335,0	0,833	0,01232	162,0	13,28990
143	-29,69630	-71,39438 -71,41076	384,0	1,173	0,01219	162,0	8,36227
145	-29,69551	-71,41076 -71,42765	414,0	0,880	0,01722	180,0	13,65478
145	-29,69331	-71,42703 -71,44322	455,0	0,880	0,01318	54,0	3,87322
147	-29,76123	-71,37813	255,0	0,920	0,01394	216,0	17,99385
147	-29,76123	-71,37813 -71,39672	349,0	0,833	0,01200	120,9	9,70472
149	-29,76391	-71,39072	349,0	0,833	0,01240	120,9	8,16641
150	-29,76449	-71,41357	424,0	0,880	0,01348	35,8	2,65352
151	-29,80436	-71,36683	197,0	0,926	0,01172	0,0	0,00000
152	-29,80338	-71,38166 71,38007	306,0	0,833	0,01223	88,6	7,24578
153	-29,81571	-71,38807	375,0	0,880	0,01293	108,0	8,35370
154	-29,90521	-71,43303	357,0	0,880	0,01233	290,5	23,55670
155	-29,91533	-71,44221	383,0	0,833	0,01242	126,0	10,14885
158	-29,96156	-71,45237	378,0	0,833	0,01242	216,0	17,38822
160	-29,67109	-71,42169	396,0	0,880	0,01101	137,2	12,46333
161	-29,68420	-71,43286	436,0	0,880	0,01126	133,0	11,80774
162	-29,68065	-71,44992	471,0	0,880	0,01141	98,0	8,58783
163	-29,67730	-71,38413	282,0	0,972	0,01112	76,0	6,83373
164	-29,84203	-71,36883	296,0	0,815	0,00927	87,0	9,38957
165	-29,84074	-71,40308	350,0	0,972	0,01156	94,0	8,13078
166	-29,83543	-71,41503	406,0	1,065	0,01250	82,0	6,56094
167	-29,92919	-71,45668	396,0	0,972	0,01178	134,0	11,38004
168	-30,01804	-71,49161	412,0	0,988	0,01220	154,0	12,62730
170	-30,15828	-71,55478	350,0	0,833	0,01246	144,0	11,55587

IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
171	-30,17513	-71,57089	364,0	0,821	0,01208	72,0	5,95948
173	-30,19746	-71,66932	380,0	0,926	0,01373	101,1	7,36317
174	-30,22278	-71,68873	393,0	0,880	0,01321	108,0	8,17371
175	-30,38552	-71,74108	388,0	0,556	0,00808	85,6	10,59983
177	-30,45640	-71,74238	350,0	0,926	0,01345	216,0	16,06020
178	-30,51574	-71,76514	378,0	0,926	0,01373	162,0	11,79589
179	-30,60338	-71,77666	354,0	0,833	0,01246	108,0	8,67080
180	-30,66871	-71,76944	358,0	0,880	0,01295	180,0	13,89586
182	-30,69103	-71,75993	388,0	0,880	0,01291	288,0	22,30950
184	-30,75381	-71,77909	354,0	0,926	0,01344	180,0	13,38967
185	-30,84658	-71,75664	372,0	0,880	0,01293	178,6	13,80985
186	-30,92667	-71,74721	352,0	0,972	0,01391	108,0	7,76392
188	-31,00849	-71,75272	351,0	0,972	0,01357	270,0	19,89947
189	-31,01208	-71,77475	448,0	0,880	0,01313	360,0	27,41374
190	-31,12333	-71,75550	360,0	0,880	0,01264	216,0	17,08955
192	-31,24502	-71,73888	410,0	0,972	0,01450	144,0	9,92823
193	-31,23949	-71,75190	465,0	0,880	0,01373	252,0	18,35464
195	-31,34473	-71,72225	358,0	0,880	0,01264	180,0	14,23803
197	-31,42571	-71,68662	347,0	0,972	0,01392	73,4	5,27348
198	-31,49554	-71,65544	341,0	0,926	0,01314	167,0	12,71335
199	-31,49189	-71,67525	366,0	0,880	0,01294	72,0	5,56341
201	-31,54137	-71,67333	343,0	0,833	0,01218	288,0	23,65289
202	-31,54058	-71,68891	367,0	0,880	0,01294	144,0	11,12811
204	-31,68798	-71,69107	345,0	0,880	0,01328	5,7	0,42909
206	-31,76560	-71,67109	375,0	0,972	0,01422	180,0	12,66081
207	-31,75261	-71,68562	486,0	0,880	0,01339	54,0	4,03364
209	-31,83097	-71,67868	359,0	0,833	0,01274	108,0	8,47491
210	-31,83683	-71,68798	395,0	0,880	0,01352	144,0	10,64978
212	-31,97040	-71,66612	353,0	0,972	0,01425	288,0	20,20641
213	-31,98334	-71,69220	368,0	0,926	0,01375	180,0	13,09177
219	-32,04009	-71,64864	504,0	0,880	0,01274	180,0	14,13039
220	-32,05659	-71,66670	403,0	0,926	0,01369	216,0	15,77229
223	-32,13749	-71,65928	367,0	0,880	0,01294	162,0	12,51913
224 225	-32,21219	-71,65384	355,0	0,972	0,01168	126,0	10,79220
223	-32,23084 -32,22000	-71,64473 -71,66807	378,0 369,0	1,019 0,972	0,01213 0,01190	72,0 72,0	5,93394
235	-32,30215	-71,60251	307,0	0,372	0,01150	0,0	6,05296 0,00000
236	-32,34096	-71,61228	335,0	0,130	0,00726	0,0	0,00000
237	-32,34090	-71,61228	371,0	1,019	0,00720	0,0	0,00000
238	-32,35241	-71,58568	208,0	1,019	0,01286	105,6	7,79099
239	-32,33241	-71,58368 -71,59361	242,0	0,972	0,01330	9,0	0,72522
240	-32,34083	-71,61033	314,0	0,372	0,00443	0,0	0,72322
241	-32,33000	-71,62633	378,0	0,972	0,00443	18,0	1,53607
242	-32,44753	-71,62053	407,0	0,972	0,00933	36,0	3,85716
243	-32,45595	-71,62824	337,0	1,019	0,01246	234,0	18,78191
244	-32,43809	-71,64068	401,0	0,926	0,01240	36,0	3,17715
245	-32,43342	-71,65378	457,0	0,972	0,01155	18,0	1,68835
246	-32,57539	-71,63901	277,0	0,309	0,00392	72,0	18,35892
247	-32,57217	-71,65567	387,0	1,019	0,01247	0,0	0,00000
248	-32,59948	-71,63835	168,0	0,972	0,01217	21,8	1,52048
249	-32,61069	-71,64255	275,0	0,340	0,00423	54,0	12,75056
249	-32,01009	-/1,04233	213,0	0,340	0,00423	34,0	12,73030

IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
250	-32,61301	-71,65573	372,0	0,926	0,01093	54,0	4,94017
251	-32,61048	-71,64494	228,0	0,972	0,01269	90,0	7,09494
252	-32,62187	-71,64630	244,0	0,938	0,01316	36,0	2,73623
253	-32,63903	-71,65333	394,0	0,972	0,01091	36,0	3,30003
254	-32,74656	-71,65618	173,0	0,972	0,01228	0,0	0,00000
255	-32,75111	-71,67028	323,0	0,926	0,01138	0,0	0,00000
256	-32,81982	-71,68663	196,0	1,019	0,01329	0,0	0,00000
257	-32,82593	-71,69830	308,0	0,926	0,01071	88,8	8,28702
258	-32,87548	-71,71652	249,0	0,355	0,00438	108,0	24,65134
259	-32,87693	-71,73462	306,0	0,972	0,01214	72,0	5,92949
260	-32,88036	-71,73908	334,0	0,972	0,01209	36,0	2,97826
261	-32,90298	-71,74075	226,0	0,340	0,00440	72,0	16,37890
262	-32,92415	-71,76540	324,0	0,972	0,01179	108,0	9,16100
263	-32,93126	-71,77154	408,0	0,926	0,01120	0,0	0,00000
264	-32,94998	-71,74771	177,0	0,972	0,01319	0,0	0,00000
265	-32,93083	-71,74921	207,0	0,972	0,01310	26,3	2,01174
266	-32,94671	-71,77715	317,0	1,019	0,01235	270,0	21,85899
267	-32,97643	-71,77198	249,0	0,972	0,01227	72,0	5,86673
268	-32,98028	-71,79298	334,0	0,926	0,01164	72,0	6,18466
269	-32,97799	-71,80881	399,0	0,324	0,00393	0,0	0,00000
270	-33,02644	-71,79529	220,0	0,926	0,01189	178,2	14,98864
271	-33,02685	-71,80833	272,0	1,019	0,01328	270,0	20,33439
272	-33,03238	-71,82148	322,0	0,972	0,01183	90,0	7,60881
273	-33,11061	-71,83740	211,0	0,880	0,01158	162,0	13,99242
274	-33,10904	-71,85482	334,0	0,972	0,01159	270,0	23,29052
275	-33,10833	-71,86423	365,0	0,972	0,01197	18,0	1,50332
276	-33,20845	-71,86566	225,0	0,926	0,01180	216,0	18,31207
277	-33,22083	-71,87997	331,0	1,065	0,01246	180,0	14,44263
278	-33,31127	-71,86108	201,0	0,926	0,01224	113,7	9,28237
279	-33,31870	-71,87805	332,0	0,972	0,01163	18,0	1,54746
280	-33,31743	-71,89050	383,0	0,926	0,01120	0,0	0,00000
281	-33,37930	-71,85983	204,0	0,972	0,01266	162,8	12,85730
282	-33,38933	-71,87698	333,0	1,019	0,01202	270,0	22,45752
283	-33,39333	-71,88686	387,0	0,972	0,01154	5,3	0,45922
284	-33,45298	-71,86403	226,0	0,972	0,01223	162,0	13,24666
285	-33,44445	-71,87808	327,0	1,019	0,01215	288,0	23,71131
286	-33,54798	-71,92497	256,0	0,556	0,00729	0,0	0,00000
287	-33,55564	-71,94367	291,0	0,926	0,01197	36,0	3,00631
288	-33,54928	-71,94349	344,0	0,972	0,01140	9,0	0,78973
289	-33,61915	-72,00439	209,0	0,972	0,01256	290,2	23,09964
290	-33,62038	-72,01603	261,0	0,926	0,01206	702,0	58,18628
291	-33,61993	-72,03241	350,0	0,972	0,01177	450,0	38,22208
292	-33,76613	-72,06515	221,0	0,972	0,01233	522,0	42,34367
293	-33,77137	-72,07493	314,0	1,019	0,01293	378,0	29,22959
294	-33,76818	-72,08083	354,0	0,926	0,01174	198,0	16,86714
295	-33,84263	-72,10914	205,0	0,972	0,01264	0,0	0,00000
296	-33,84459	-72,12650	309,0	0,309	0,00372	108,0	29,01510
297	-33,85088	-72,13740	353,0	1,019	0,01161	90,0	7,75120
298	-33,91259	-72,12159	168,0	0,972	0,01337	0,0	0,00000
299	-33,92789	-72,14335	329,0	0,972	0,01070	5,8	0,54200
300	-34,07167	-72,21948	268,0	0,972	0,01190	90,0	7,56341

	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
301	-34,08406	-72,23030	322,0	0,926	0,01092	126,0	11,53476
302	-34,12596	-72,23148	259,0	0,972	0,01257	33,2	2,64347
303	-34,10736	-72,24323	312,0	0,880	0,01113	90,0	8,08916
304	-34,12716	-72,25435	352,0	0,972	0,01173	54,0	4,60201
305	-34,13243	-72,21457	264,0	0,972	0,01247	0,0	0,00000
306	-34,15513	-72,23858	257,0	1,019	0,01307	53,1	4,06422
307	-34,14134	-72,24403	282,0	0,926	0,01167	90,0	7,71089
308	-34,20819	-72,21305	217,0	0,972	0,01241	180,0	14,50876
309	-34,19555	-72,22813	244,0	0,926	0,01144	270,0	23,60140
310	-34,20548	-72,24568	281,0	0,972	0,01214	106,9	8,80936
311	-34,26788	-72,22444	231,0	0,926	0,01168	196,3	16,79959
312	-34,26402	-72,24243	261,0	1,019	0,01299	180,0	13,86119
313	-34,25236	-72,26473	336,0	0,926	0,01160	72,0	6,20465
314	-34,27249	-72,26884	409,0	0,926	0,01118	144,0	12,87876
315	-34,29765	-72,22483	252,0	0,926	0,01176	216,0	18,36469
316	-34,31158	-72,22656	248,0	1,019	0,01273	234,0	18,37470
317	-34,31003	-72,24078	263,0	0,972	0,01249	270,0	21,61297
318	-34,29947	-72,24138	266,0	0,926	0,01197	179,4	14,98300
320	-34,32505	-72,17609	213,0	0,880	0,01109	47,0	4,23538
321	-34,32893	-72,19342	237,0	0,926	0,01157	36,0	3,11123
322	-34,32240	-72,20907	278,0	0,972	0,01220	88,6	7,26074
323	-34,38083	-72,17553	203,0	0,972	0,01268	40,3	3,17736
324	-34,38839	-72,19336	289,0	0,907	0,01118	18,0	1,60959
325	-34,37243	-72,20523	337,0	0,926	0,01159	0,0	0,00000
326	-34,45412	-72,17697	240,0	0,972	0,01195	43,3	3,62508
327	-34,45005	-72,19491	344,0	0,309	0,00366	18,0	4,91656
328	-34,49780	-72,17876	228,0	0,972	0,01219	82,5	6,76584
329	-34,50466	-72,19306	296,0	0,926	0,01141	234,0	20,50851
330	-34,53994	-72,17431	201,0	0,926	0,01224	90,0	7,35024
331	-34,53018	-72,19506	290,0	0,309	0,00384	7,1	1,84732
332	-34,56555	-72,20018	264,0	0,324	0,00416	72,0	17,31768
333	-34,57051	-72,21017	359,0	1,019	0,01201	90,0	7,49619
334	-34,59869	-72,20787	295,0	1,019	0,01229	126,0	10,25541
335	-34,61851	-72,22720	372,0	0,972	0,01233	4,6	0,37305
336	-34,64159	-72,22600	292,0	0,926	0,01196	72,0	6,02203
337	-34,65329	-72,22829	340,0	1,037	0,01277	72,0	5,63923
338	-34,69664	-72,23103	268,0	0,926	0,01241	144,0	11,60813
339	-34,70087	-72,24576	300,0	1,019	0,01270	126,0	9,91985
340	-34,72673	-72,23578	232,0	0,880	0,01165	19,9	1,70662
341	-34,72703	-72,24304	265,0	0,926	0,01246	17,8	1,42683
342	-34,72703	-72,25809	353,0	0,833	0,01124	0,0	0,00000
343	-34,76030	-72,26704	230,0	0,880	0,01169	0,0	0,00000
344	-34,75698	-72,28811	233,0	0,926	0,01212	0,0	0,00000
345	-34,76413	-72,30296	259,0	0,880	0,01162	0,0	0,0000
346	-34,85127	-72,48324	216,0	0,972	0,01243	103,7	8,34274
347	-34,86260	-72,50193	249,0	0,926	0,01229	32,9	2,67332
348	-34,85428	-72,51609	333,0	0,880	0,01120	6,7	0,59819
349	-34,91853	-72,52986	176,0	0,926	0,01224	0,0	0,0000
350	-34,91798	-72,54528	238,0	0,926	0,01155	486,0	42,06954
351	-34,91453	-72,55621	333,0	0,880	0,01120	180,0	16,07071
352	-34,97193	-72,57163	239,0	0,972	0,01197	342,0	28,56165

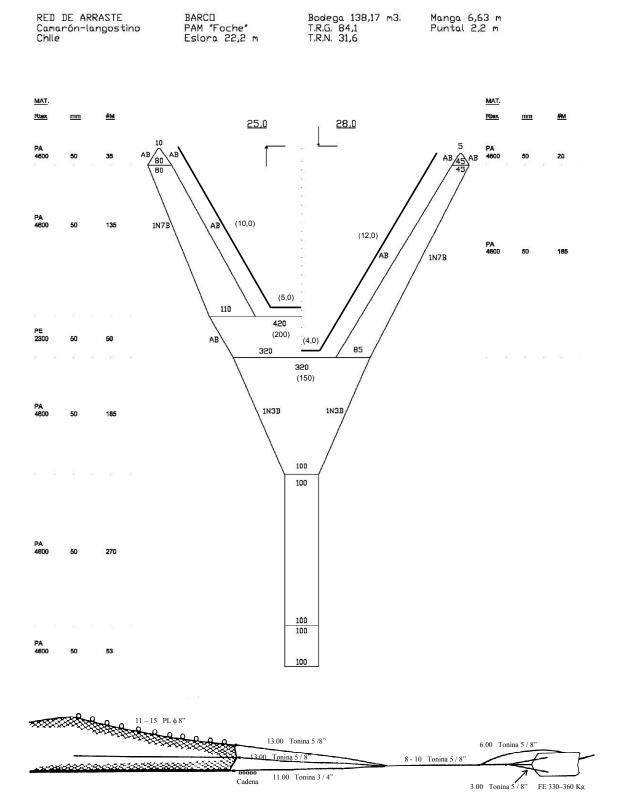
IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
353	-34,97338	-72,58553	323,0	0,972	0,01230	396,0	32,18544
355	-35,06322	-72,60701	191,0	0,880	0,01193	0,0	0,00000
356	-35,07085	-72,63218	257,0	0,880	0,01121	378,0	33,72621
357	-35,05683	-72,64173	342,0	0,926	0,01149	216,0	18,79568
358	-35,25473	-72,69999	183,0	0,926	0,01211	19,0	1,57185
359	-35,24693	-72,70573	226,0	0,972	0,01223	108,0	8,83111
360	-35,25753	-72,72354	271,0	0,926	0,01141	306,0	26,82728
361	-35,37879	-72,95765	276,0	0,833	0,01084	4,8	0,43980
362	-35,38843	-72,97979	338,0	0,880	0,01111	36,0	3,23983
364	-35,44124	-72,99603	260,0	0,907	0,01125	270,0	23,99424
365	-35,43108	-73,00379	342,0	0,880	0,01059	90,0	8,49634
366	-35,43484	-73,02845	453,0	0,926	0,01036	0,0	0,00000
367	-35,60704	-73,05184	215,0	0,926	0,01245	144,0	11,56264
368	-35,62995	-73,07601	237,0	1,019	0,01296	180,0	13,88750
369	-35,63572	-73,08754	262,0	0,972	0,01301	324,0	24,90966
370	-35,65207	-73,09193	251,0	0,972	0,01322	108,0	8,16753
371	-35,63860	-73,10378	291,0	0,880	0,01105	0,0	0,00000
372	-35,64307	-73,11672	325,0	1,019	0,01219	198,0	16,24642
373	-35,72907	-73,12328	241,0	0,972	0,01292	180,0	13,92693
374	-35,73013	-73,13036	252,0	0,880	0,01174	342,0	29,11977
375	-35,71620	-73,14833	282,0	0,972	0,01261	108,0	8,56185
376	-35,69903	-73,14504	304,0	0,926	0,01173	234,0	19,94613
377	-35,71145	-73,17640	356,0	0,880	0,01079	5,5	0,50965
378	-35,76303	-73,15636	272,0	0,972	0,01232	144,0	11,69239
379	-35,79044	-73,18195	264,0	0,880	0,01198	0,0	0,00000
380	-35,86405	-73,00126	189,0	0,833	0,01146	18,0	1,57130
381	-35,82855	-73,03008	211,0	0,880	0,01203	90,0	7,48410
382	-35,83271	-73,02461	210,0	0,926	0,01349	54,0	4,00294
383	-35,86712	-73,05203	223,0	0,926	0,01230	18,0	1,46292
384	-35,82877	-73,08314	250,0	0,833	0,01128	108,0	9,57719
385	-35,83092	-73,09253	264,0	0,972	0,01297	4,9	0,37786
386	-35,84705	-73,10308	285,0	0,972	0,01256	0,0	0,00000
387	-35,89208	-72,94740	181,0	0,880	0,01122	43,8	3,90454
388	-35,89404	-72,96124	191,0	0,972	0,01242	24,1	1,94404
389	-35,89913	-72,97608	213,0	0,926	0,01202	14,0	1,16498
390	-35,88444	-73,00661	235,0	0,972	0,01255	18,0	1,43454
391	-35,98233	-72,96158	243,0	0,880	0,01146	162,0	14,14007
392	-35,97165	-72,98053	276,0	0,972	0,01224	180,0	14,70937
393	-35,98695	-72,99033	297,0	0,972	0,01182	216,0	18,26700
394	-35,98465	-73,01098	330,0	0,926	0,01125	180,0	16,00683
395	-35,96658	-73,02740	340,0	0,926	0,01153	144,0	12,48981
396	-35,98790	-73,04291	355,0	0,880	0,01081	108,0	9,99121
397	-36,02213	-72,95973	246,0	0,880	0,01140	54,0	4,73543
398	-36,00918	-72,97643	291,0	0,926	0,01150	54,0	4,69426
399	-36,02266	-72,99162	310,0	0,926	0,01162	108,0	9,29488
400	-36,06443	-72,96140	230,0	0,972	0,01215	4,4	0,36162
401	-36,05970	-72,97808	274,0	0,880	0,01135	137,3	12,09352
402	-36,06828	-72,99604	305,0	0,926	0,01171	83,9	7,16560
403	-36,06618	-73,42692	159,0	0,880	0,01161	0,0	0,00000
404	-36,05673	-73,44662 73,46235	236,0	0,972	0,01203	30,9	2,56802
405	-36,05360	-73,46235	291,0	0,972	0,01194	71,9	6,01809

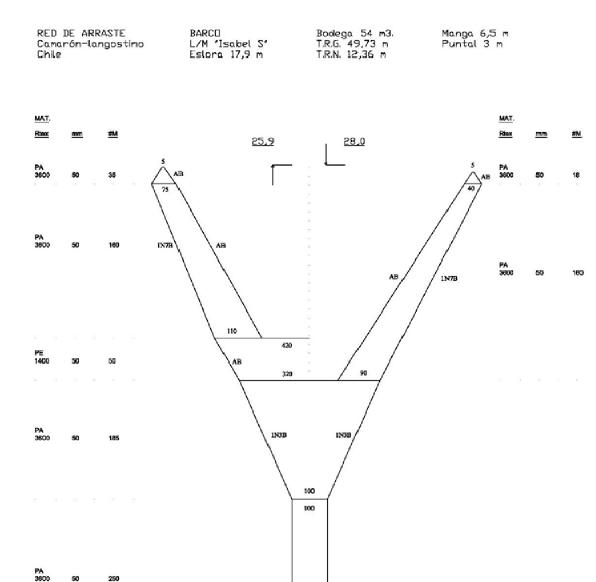
IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
406	-36,05562	-73,47093	340,0	0,972	0,01197	18,0	1,50380
408	-36,09286	-73,43560	223,0	0,972	0,01229	0,0	0,00000
409	-36,08748	-73,44295	289,0	0,880	0,01109	0,0	0,00000
410	-36,08816	-73,45253	360,0	0,880	0,01072	0,0	0,00000
411	-36,17916	-73,53702	336,0	0,972	0,01205	0,0	0,00000
412	-36,18313	-73,52821	268,0	1,019	0,01284	216,0	16,82007
413	-36,21503	-73,52778	201,0	0,880	0,01176	0,0	0,00000
414	-36,23193	-73,54897	246,0	0,926	0,01187	270,0	22,73876
415	-36,23195	-73,55542	305,0	0,880	0,01080	18,0	1,66627
416	-36,25382	-73,55663	246,0	0,833	0,01050	291,2	27,74519
418	-36,30153	-73,56368	251,0	0,926	0,01178	36,0	3,05185
419	-36,29669	-73,56989	336,0	0,926	0,01160	36,0	3,10233
420	-36,38171	-73,53433	191,0	0,926	0,01196	0,0	0,00000
421	-36,38254	-73,54740	274,0	0,972	0,01178	5,6	0,47532
422	-36,39011	-73,55677	351,0	0,926	0,01132	0,0	0,00000
423	-36,42455	-73,53069	189,0	0,926	0,01200	0,0	0,00000
424	-36,43221	-73,55161	270,0	0,972	0,01236	270,0	21,85350
425	-36,43287	-73,55917	314,0	0,880	0,01154	0,0	0,00000
426	-36,46743	-73,55233	229,0	0,880	0,01126	0,0	0,00000
427	-36,46539	-73,56142	290,0	0,880	0,01107	0,0	0,00000
428	-36,47546	-73,55301	226,0	0,926	0,01225	0,0	0,00000
429	-36,47767	-73,56179	251,0	0,972	0,01273	0,0	0,00000
431	-36,51478	-73,54726	174,0	0,648	0,00850	0,0	0,00000
432	-36,51135	-73,55870	253,0	0,880	0,01128	504,0	44,68481
433	-36,51841	-73,57756	273,0	0,880	0,01137	234,0	20,57794
434	-36,54699	-73,57633	244,0	0,926	0,01144	72,0	6,29371
435	-36,55020	-73,59584	375,0	0,833	0,01044	0,0	0,00000
436	-36,60176	-73,57232	275,0	0,880	0,01089	72,0	6,61278
438	-36,69148	-73,57064	203,0	0,926	0,01174	270,0	23,00672
439	-36,69658	-73,57799	255,0	0,972	0,01215	5,6	0,46073
1000	-35,83684	-72,88236	147,0	1,466	0,01970	0,0	0,00000
1001	-35,84256	-72,94612	165,0	0,926	0,01198	540,0	45,09282
1002	-35,82955 -35,80200	-73,00006 -73,02090	195,0	1,056 6,352	0,01370 0,08141	9,4 21,1	0,68810 0,25925
1003	-35,80200	-73,02090	189,0 185,0	7,531	0,08141	13,5	0,23923
1004	-35,63678	-73,00543	195,0	3,812	0,04946	121,9	2,46462
1005	-35,84578	-72,98437	190,0	2,932	0,03834	71,4	1,86202
1007	-35,84296	-73,00346	199,0	3,457	0,04585	350,8	7,65096
1007	-35,82063	-73,01393	195,0	5,865	0,07610	202,2	2,65773
1009	-33,61455	-72,00184	246,0	2,531	0,03246	1296,0	39,93160
1010	-33,62839	-72,00431	252,0	5,494	0,06979	1609,3	23,06065
1011	-33,62839	-72,00711	265,0	5,556	0,06911	612,0	8,85531
1012	-33,60564	-71,97148	240,0	3,519	0,04555	526,9	11,56847
1013	-33,59482	-71,98073	255,0	3,395	0,04292	570,9	13,30059
1014	-33,59819	-71,98353	235,0	2,840	0,03704	576,5	15,56111
2000	-28,62050	-71,35380	213,0	3,577	0,05228	0,0	0,00000
2001	-28,62930	-71,35732	213,0 243,0	5,062	0,07085	0,0	0,00000
2002	-28,58693	-71,35563	268,0	0,972	0,01370	70,1	5,11541
2003	-28,70785	-71,41003	263,0	0,926	0,01326	0,0	0,00000
2004	-28,72378	-71,43252	295,0	4,877	0,06956	0,0	0,00000
2005	-28,71533	-71,42508	293,0	5,571	0,08067	815,0	10,10225

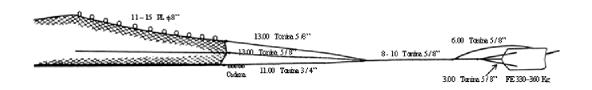
IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
2006	-28,72437	-71,43259	280,0	5,510	0,07754	649,0	8,36937
2007	-30,29345	-71,69440	292,0	4,223	0,06115	488,3	7,98546
2008	-30,35947	-71,72449	314,0	0,432	0,00615	57,4	9,33801
2009	-30,33111	-71,71746	315,0	2,756	0,03981	360,0	9,04280
2010	-30,36889	-71,72764	308,0	5,380	0,07546	630,0	8,34829
2011	-30,26797	-71,68398	303,0	4,630	0,06597	540,0	8,18512
2012	-30,28716	-71,69438	347,0	2,932	0,04219	391,0	9,26654
2013	-30,34648	-71,73631	356,0	3,056	0,04566	576,0	12,61484
2014	-30,33230	-71,73020	350,0	0,176	0,00266	24,5	9,22683
2015	-30,45165	-71,74289	352,0	2,170	0,03197	432,0	13,51110
2016	-30,44791	-71,74348	343,0	2,556	0,03824	385,0	10,06683
2017	-30,38814	-71,73584	358,0	2,170	0,03195	360,0	11,26694
2018	-30,38853	-71,73670	342,0	0,444	0,00665	74,0	11,12464
2019	-30,39193	-71,73707	355,0	0,235	0,00346	37,4	10,82364
2020	-30,05929	-71,48130	350,0	3,951	0,05738	740,9	12,91087
2021	-30,04558	-71,47854	340,0	7,408	0,10772	1242,0	11,52996
100005	-25,73057	-70,75636	367,0	0,926	0,01310	0,8	0,06086
100014	-26,00623	-70,76725	377,0	0,926	0,01406	7,3	0,51981
100015	-26,02107	-70,75272	343,0	0,880	0,01266	4,2	0,33330
100018	-26,09535	-70,76368	313,0	0,972	0,01329	31,5	2,37263
100020	-26,21711	-70,78768	299,0	0,972	0,01331	2,3	0,17627
100021	-26,27994	-70,83208	328,0	0,972	0,01361	21,6	1,59074
100022	-26,27713	-70,83335	345,0	0,972	0,01358	34,0	2,50405
100026	-26,37293	-70,86349	335,0	0,972	0,01359	4,3	0,31263
100027	-26,36663	-70,86317	356,0	0,833	0,01245	68,0	5,46058
100029	-26,40651	-70,85883	415,0	0,880	0,01287	119,0	9,24667
100030	-26,41443	-70,84645	368,0	0,926	0,01375	85,0	6,18222
100032	-26,43811	-70,84256	335,0	0,880	0,01268	51,0	4,02332
100033	-26,54255	-70,82375	326,0	0,972	0,01326	23,9	1,79820
100042	-26,77021	-70,88342	395,0	0,972	0,01418	4,3	0,29962
100045	-26,82968	-70,89003	325,0	0,972	0,01327	7,6	0,57204
100046	-26,87289	-70,91897	298,0	0,880	0,01242	71,0	5,72032
100048	-26,93001	-70,91658	289,0	0,926	0,01289	34,0	2,63795
100049	-26,94878	-70,90759	318,0	0,972	0,01328	30,4	2,29223
100050	-26,95084	-70,89840	282,0	0,972	0,01334	2,7	0,20493
100051	-26,98504	-70,91858	340,0	0,880	0,01236	32,7	2,64228
100052	-27,03617	-70,93196	277,0	0,926	0,01291	7,6	0,59152
100053	-27,03717	-70,93677	299,0	0,972	0,01331	24,1	1,80856
100058	-27,13787	-71,00990	298,0	0,926	0,01320	10,5	0,79402
100064	-27,45232	-71,02910	318,0	0,880	0,01270	19,8	1,55664
100066	-27,50318	-71,03123	318,0	0,833	0,01221	139,1	11,39211
100068	-27,59509	-71,02825	211,0	0,972	0,01276	26,2	2,04911
100069	-27,57318	-71,01879	248,0	0,972	0,01339	192,0	14,33702
100072	-27,84429	-71,15351	289,0	0,926	0,01289	51,4	3,98672
100074	-27,89284	-71,15862	266,0	0,972	0,01336	130,8	9,78866
100077	-27,97885	-71,19223	405,0	0,972	0,01348	34,0	2,52220
100081	-28,13383	-71,23305	223,0	0,833	0,01175	11,8	1,00724
100083	-28,20213	-71,26135	282,0	0,972	0,01334	28,3	2,12005
100086	-28,41108	-71,30692	387,0	0,972	0,01351	68,7	5,08453
100087	-28,47782	-71,32192	263,0	0,889	0,01279	160,2	12,52158
100088	-28,47912	-71,31858	196,0	0,972	0,01279	129,1	10,09110

61484 02289 59069 37487 91725 62358 23511 94069 20357 00000 65906 01620 78510 96198 27457 46483 15807
59069 37487 91725 62358 23511 94069 20357 00000 65906 01620 78510 96198 27457 46483
37487 91725 62358 23511 94069 20357 00000 65906 01620 78510 96198 27457 46483
37487 91725 62358 23511 94069 20357 00000 65906 01620 78510 96198 27457 46483
91725 62358 23511 94069 20357 00000 65906 01620 78510 96198 27457 46483
62358 23511 94069 20357 00000 65906 01620 78510 96198 27457 46483
23511 94069 20357 00000 65906 01620 78510 96198 27457 46483
94069 20357 00000 65906 01620 78510 96198 27457 46483
20357 00000 65906 01620 78510 96198 27457 46483
00000 65906 01620 78510 96198 27457 46483
65906 01620 78510 96198 27457 46483
01620 78510 96198 27457 46483
78510 96198 27457 46483
96198 27457 46483
27457 46483
46483
02217
36067
08392
39135
07357
08297
41258
83378
30469
18001
88449
11718
11185
50122
04659
86722
08292
49530
41844
02708
52377
10965
77648
99672
01829
07696
07696 77671
77671
77671 35549
77671 35549 33167
77671 35549 33167 26066
77671 35549 33167 26066 09623
77671 35549 33167 26066
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
100260	-31,93165	-71,67733	279,0	0,926	0,01173	171,5	14,62103
100262	-31,93478	-71,64350	190,0	0,972	0,01195	93,8	7,85198
100263	-31,92574	-71,70503	336,0	0,880	0,01160	97,0	8,36567
100266	-31,96647	-71,66309	301,0	0,926	0,01132	179,7	15,87961
100267	-31,98195	-71,64994	268,0	0,972	0,01239	180,2	14,53894
100268	-32,02213	-71,65346	336,0	0,972	0,01155	144,1	12,47243
100271	-32,05484	-71,64663	336,0	0,972	0,01205	152,3	12,63929
100273	-32,06841	-71,63864	282,0	0,972	0,01212	137,2	11,31783
100274	-32,07183	-71,63181	267,0	0,972	0,01192	107,8	9,04052
100276	-32,09246	-71,63768	281,0	0,972	0,01214	97,4	8,02758
100281	-32,12888	-71,64829	303,0	0,880	0,01084	85,3	7,86671
100284	-32,14266	-71,64842	308,0	0,926	0,01166	100,4	8,61204
102002	-30,01857	-71,44776	131,0	0,972	0,01311	118,9	9,07194
102003	-30,02828	-71,44575	125,0	0,926	0,01225	127,4	10,39805
102004	-30,00028	-71,44183	137,0	0,972	0,01299	107,4	8,26854
104002	-29,88651	-71,41789	272,0	0,880	0,01139	106,9	9,38871
105001	-31,47996	-71,63891	204,0	0,972	0,01217	62,4	5,12974
105002	-31,47404	-71,65288	285,0	0,926	0,01162	105,8	9,11172
105003	-31,49868	-71,64013	198,0	0,880	0,01136	85,4	7,51430
105004	-31,49831	-71,65567	269,0	0,972	0,01287	131,3	10,20164
150000	-29,45533	-71,52918	347,0	5,121	0,06232	185,8	2,98204
150001	-29,46395	-71,52048	347,0	4,991	0,06074	231,8	3,81669
150002	-30,02957	-71,47248	343,0	1,759	0,02205	269,4	12,21913
150003	-30,05511	-71,47829	333,0	2,204	0,02744	237,7	8,66312
150004	-30,07419	-71,48613	335,0	1,852	0,02325	124,1	5,33741
150005	-30,04573	-71,47528	333,0	2,932	0,03734	411,3	11,01666
150006	-30,05108	-71,47682	333,0	3,306	0,04116	414,4	10,06695
150007	-30,05160	-71,47414	317,0	1,642	0,02060	200,0	9,70509
150008	-30,02194	-71,46704	326,0	4,602	0,05796	606,3	10,46112
150009	-30,01642	-71,46559	339,0	7,448	0,09393	995,8	10,60183
150010	-30,03091	-71,47086	337,0	6,420	0,08033	852,8	10,61655
150013	-30,03798	-71,46763	288,0	4,667	0,06397	386,1	6,03645
150014	-29,98315	-71,46223	306,0	6,862	0,09678	831,3	8,58968
150015	-29,93459	-71,41528	148,0	0,972	0,01183	96,5	8,15618
150016	-29,78149	-71,36801	162,0	0,880	0,01106	102,7	9,28160
150019	-30,04234	-71,46948	289,0	6,417	0,08795	827,2	9,40560
150048	-29,98677	-71,43932	201,0	4,732	0,06220	562,3	9,04124
150051	-29,76530	-71,36866	181,0	4,753	0,05861	611,8	10,43794
150052	-29,78229	-71,36718	172,0	6,334	0,07731	1004,4	12,99175
150054	-29,86212	-71,35446	141,0	5,899	0,06769	661,2	9,76828
150055	-29,86333	-71,35070	146,0	6,158	0,07062	475,2	6,72867
200001	-25,59563	-70,73000	400,0	0,972	0,01349	0,0	0,00000
200002	-25,63196	-70,73474	291,0	0,926	0,01289	0,0	0,00000
200003	-25,65521	-70,75198	343,0	0,880	0,01266	0,0	0,00000
200004	-25,70290	-70,77183	348,0	0,833	0,01217	0,0	0,00000
200006	-25,73903	-70,77380	326,0	0,972	0,01361	0,0	0,00000
200007	-25,78243	-70,79589	318,0	0,880	0,01239	0,0	0,00000
200008	-25,79912	-70,79925	382,0	0,972	0,01352	0,0	0,00000
200009	-25,81891	-70,79873	315,0	0,972	0,01294	0,0	0,00000
200016	-26,06507	-70,76993	311,0	0,972	0,01329	0,0	0,00000
200017	-26,07470	-70,76895	309,0	0,972	0,01329	0,0	0,00000

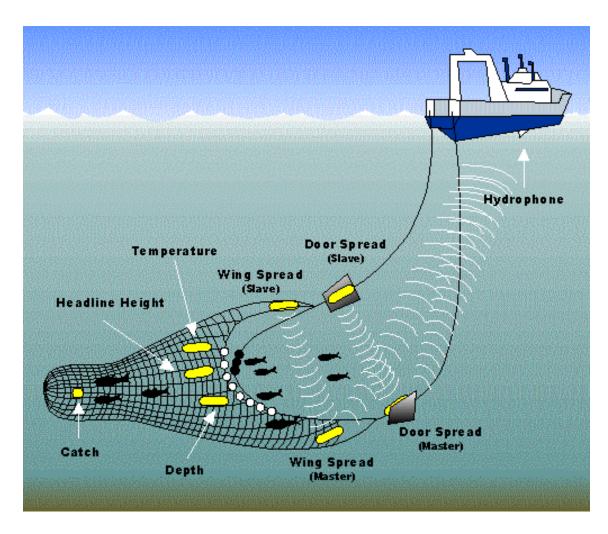

IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
200024	-26,29669	-70,81109	287,0	0,972	0,01333	0,0	0,00000
200025	-26,31889	-70,82204	315,0	0,926	0,01285	0,0	0,00000
200031	-26,42663	-70,83502	266,0	0,880	0,01216	0,0	0,00000
200034	-26,57289	-70,81223	264,0	0,926	0,01293	0,0	0,00000
200041	-26,74046	-70,84168	318,0	0,972	0,01328	0,0	0,00000
200043	-26,79639	-70,87016	284,0	0,880	0,01244	0,0	0,00000
200044	-26,80219	-70,87590	260,0	0,926	0,01293	0,0	0,00000
200047	-26,88826	-70,89489	228,0	0,972	0,01308	0,0	0,00000
200054	-27,08738	-70,97668	238,0	0,880	0,01251	0,0	0,00000
200057	-27,12128	-71,00692	258,0	0,972	0,01338	0,0	0,00000
200059	-27,18471	-71,01183	318,0	0,972	0,01362	166,0	12,18376
200061	-27,26598	-71,01583	238,0	0,880	0,01220	202,0	16,56000
200063	-27,42186	-71,02536	199,0	0,972	0,01244	184,0	14,79135
200067	-27,54338	-71,01160	269,0	1,065	0,01417	340,0	23,98723
200071	-27,75958	-71,11788	206,0	0,972	0,01208	0,0	0,00000
200012	-25,93808	-70,78644	283,0	0,880	0,01244	0,0	0,00000
200013	-25,95463	-70,78270	308,0	0,833	0,01193	0,0	0,00000
200076	-27,97273	-71,17646	143,0	0,833	0,01010	0,0	0,00000
201003	-26,12452	-70,77189	326,0	0,926	0,01316	0,0	0,00000
201001	-26,12840	-70,78097	351,0	0,880	0,01234	0,0	0,00000
200079	-28,03329	-71,19754	238,0	0,880	0,01251	0,0	0,00000
200084	-28,23219	-71,24809	210,0	0,880	0,01193	0,0	0,00000
200085	-28,34723	-71,27837	295,0	1,019	0,01373	0,0	0,00000
200093	-28,71010	-71,41158	223,0	0,880	0,01222	0,0	0,00000
200097	-28,84071	-71,54736	488,0	0,926	0,01389	0,0	0,00000
200106	-29,31851	-71,59012	168,0	0,926	0,01192	119,4	10,01334
200118	-29,42288	-71,53804	283,0	0,972	0,01210	0,0	0,00000
200119	-29,43148	-71,51694	299,0	0,972	0,01129	0,0	0,00000
200127	-29,47623	-71,50035	309,0	0,926	0,01211	0,0	0,00000
203004	-29,47916	-71,53392	374,0	0,972	0,01180	0,0	0,00000
200130	-29,48642	-71,50905	345,0	0,972	0,01187	0,0	0,00000
200135	-29,51994	-71,46830	321,0	0,880	0,01052	0,0	0,00000
200140	-29,56913	-71,41321	273,0	0,972	0,01230	0,0	0,00000
200152	-29,65403	-71,37766	219,0	0,972	0,01237	0,0	0,00000
200155	-29,68088	-71,36252	129,0	0,907	0,01227	0,0	0,00000
200158	-29,70898	-71,36429	132,0	0,926	0,01212	0,0	0,00000
200161	-29,73737	-71,36487	136,0	0,926	0,01252	0,0	0,00000
200171	-29,82324	-71,35574	132,0	0,972	0,01309	0,0	0,00000
200178	-29,94299	-71,41018	134,0	0,926	0,01256	0,0	0,00000
200179	-29,96841	-71,43576	226,0	0,972	0,01322	0,0	0,00000
200189	-30,09652	-71,47594	193,0	0,972	0,01238	0,0	0,00000
200188	-30,09167	-71,49846	345,0	0,926	0,01144	0,0	0,00000
200197	-30,17103	-71,54038	238,0	0,972	0,01249	0,0	0,00000
200202	-30,19621	-71,55776	190,0	0,972	0,01244	0,0	0,00000
200203	-30,19122	-71,58502	266,0	0,972	0,01194	0,0	0,00000
200216	-30,60689	-71,76249	167,0	0,880	0,01191	0,0	0,00000
200222	-30,99576	-71,72886	272,0	0,880	0,01094	0,0	0,00000
200225	-31,07425	-71,72738	171,0	0,972	0,01282	0,0	0,00000
200229	-31,18782	-71,70333	217,0	0,880	0,01102	0,0	0,00000
200230	-31,20371	-71,72039	328,0	0,880	0,01129	0,0	0,00000
200236	-31,38420	-71,66435	214,0	0,880	0,01152	0,0	0,00000

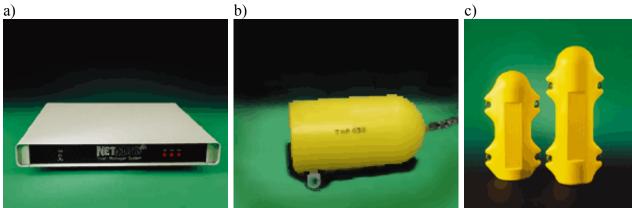

IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
200237	-31,40663	-71,65041	222,0	0,972	0,01231	0,0	0,00000
200241	-31,45128	-71,64609	240,0	0,972	0,01195	0,0	0,00000
200242	-31,46901	-71,63093	201,0	0,926	0,01177	0,0	0,00000
200243	-31,51731	-71,63232	275,0	0,972	0,01176	0,0	0,00000
200250	-31,73179	-71,65928	202,0	0,926	0,01175	0,0	0,00000
200253	-31,78028	-71,64139	199,0	0,880	0,01134	0,0	0,00000
200258	-31,90126	-71,64431	218,0	0,926	0,01193	0,0	0,00000
200261	-31,91828	-71,62658	175,0	0,972	0,01175	0,0	0,00000
200265	-31,95394	-71,64367	203,0	0,880	0,01127	0,0	0,00000
200269	-31,99633	-71,64170	247,0	0,972	0,01281	0,0	0,00000
200270	-32,02067	-71,63941	263,0	0,926	0,01156	0,0	0,00000
200272	-32,04108	-71,60974	199,0	0,880	0,01134	0,0	0,00000
200275	-32,08536	-71,61832	200,0	0,880	0,01177	0,0	0,00000
200285	-32,15703	-71,62359	217,0	0,926	0,01147	0,0	0,00000
200282	-32,13333	-71,61516	180,0	0,926	0,01217	0,0	0,00000
300103	-29,29793	-71,59386	254,0	0,972	0,01217	121,9	10,01306
350055	-29,85884	-71,39385	276,0	3,334	0,04672	475,2	10,17036
300015	-29,78563	-71,37052	172,0	6,334	0,07731	623,0	8,05838
300075	-27,85675	-71,16050	382,0	0,926	0,01406	0,0	0,00000
400027	-25,27158	-70,53617	258,0	0,926	0,01228	0,0	0,00000
400037	-25,34133	-70,58108	343,0	0,926	0,01379	0,0	0,00000
400038	-25,34017	-70,59942	401,0	0,926	0,01403	0,0	0,00000
401012	-25,37950	-70,62342	431,0	0,926	0,01463	0,0	0,00000
400067	-26,61442	-70,80433	239,0	0,926	0,01231	0,0	0,00000
400120	-28,73683	-71,41542	148,0	0,926	0,01114	0,0	0,00000
400126	-28,97217	-71,54792	155,0	0,926	0,01113	0,0	0,00000
400127	-28,97542	-71,56983	499,0	0,926	0,01518	0,0	0,00000
400132	-29,16525	-71,60883	476,0	0,926	0,01522	0,0	0,00000
400042	-25,53742	-70,72850	449,0	0,617	0,00974	0,0	0,00000
400043	-25,75608	-70,78317	287,0	0,926	0,01256	0,0	0,00000
400050	-26,03817	-70,74750	277,0	0,926	0,01291	0,0	0,00000
401007	-28,24983	-71,26517	287,0	0,926	0,01256	0,0	0,00000
400131	-29,16108	-71,58925	340,0	0,309	0,00449	0,0	0,00000
400153	-29,69324	-71,46163	515,0	1,019	0,01035	0,0	0,00000
400115	-28,60533	-71,34475	131,0	0,926	0,01084	0,0	0,00000
400170	-30,06221	-71,51550	463,0	0,972	0,01104	0,0	0,00000
402031	-30,10600	-71,51714	282,0	7,964	0,10038	0,0	0,00000
400177	-30,15362	-71,53316	270,0	0,880	0,01098	0,0	0,00000
400175	-30,12165	-71,58497	448,0	0,972	0,01133	0,0	0,00000
400195	-30,55987	-71,75751	242,0	0,833	0,01056	0,0	0,00000
400205	-30,77502	-71,75527	317,0	0,880	0,01166	0,0	0,00000
400206	-30,78839	-71,76745	364,0	0,833	0,01063	0,0	0,00000
400204	-30,80081	-71,75624	212,0	0,926	0,01157	0,0	0,00000
400207	-30,85508 30,06450	-71,73963	266,0 305.0	0,833	0,01016	0,0	0,00000
400212	-30,96450	-71,75153	395,0 207.0	0,926	0,01097	0,0	0,00000
400216	-31,07830 -31,32985	-71,73298 -71,70041	207,0	1,111 0,880	0,01337	0,0 0,0	0,00000 0,00000
400223	-31,32983		278,0 337.0	0,880	0,01128		0,00000
400238	-31,63393	-71,69302 -71,68996	337,0 324,0	0,926	0,01159 0,01228	0,0 0,0	0,00000
400239	-31,83467	-71,08990 -71,70060	505,0	0,972	0,01228	0,0	0,00000
400256	\$11.000.000.000.000.000.000.000.000.000.						
400209	-32,02511	-71,69343	518,0	0,972	0,01605	0,0	0,00000


IDP	Latitud	Longitud	Prof.	D.R.	A.B.	Capt.	CPUA
400116	-28,59758	-71,36475	293,0	0,926	0,01288	91,1	7,07047
400123	-28,81675	-71,50050	259,0	0,926	0,01261	189,2	15,00456
400124	-28,81667	-71,51958	346,0	0,617	0,00897	79,0	8,80674
400246	-31,71657	-71,68553	372,0	0,926	0,01140	52,0	4,55872
400245	-31,72943	-71,67623	310,0	0,972	0,01256	121,2	9,65180
402032	-27,57342	-71,04258	379,0	0,926	0,01127	141,9	12,59079
402033	-27,37117	-71,04367	505,0	0,926	0,01127	162,2	14,39098
402034	-27,36425	-71,03767	373,0	0,926	0,01185	78,7	6,63787
402035	-27,22575	-71,01717	320,0	0,926	0,01190	189,2	15,89662

ANEXO 3

CARACTERÍSTICAS TÉCNICAS EMBARCACIONES Y PLANOS DE LAS REDES UTILIZADAS.





PA 3600

ANEXO 4

SISTEMA NETMIND PARA MEDICIÓN DE APA

Equipo Wing Spread Netmind de North Star Technical. (a) Deck Unit de conección entre el hidrófono y el PC; (b) hidrófono de remolque; (c) Sensores de abertura de alas.

Anexo 5. Distribución espacial de la densidad (tons/km²) de camarón nailon por zona de análisis geoestadístico

ANEXO 5

DISTRIBUCIÓN ESPACIAL DE LA DENSIDAD (Tons/Km²) DE CAMARÓN NAILON ENTRE LA V Y VIII REGIONES

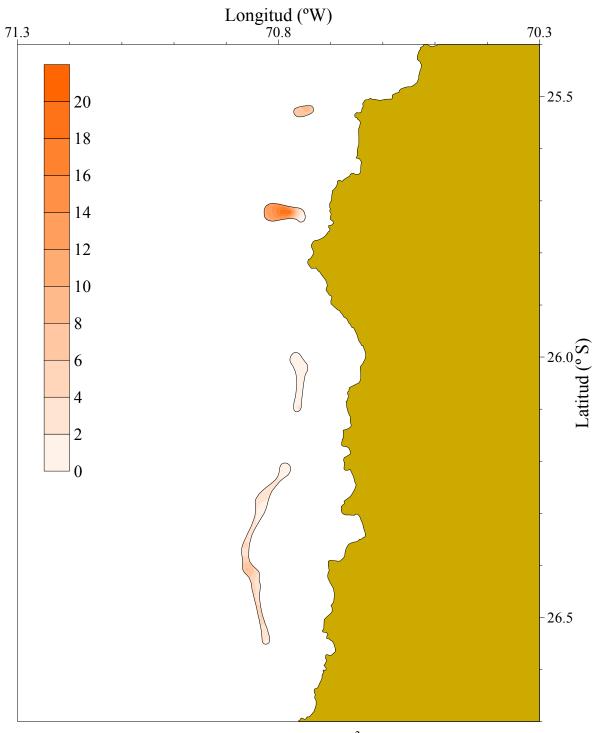


Fig. 49. Distribución espacial de la densidad (tons/km²) de camarón nailon (*H. reedi*) entre la II y VIII Regiones (Focos 1 a 4).

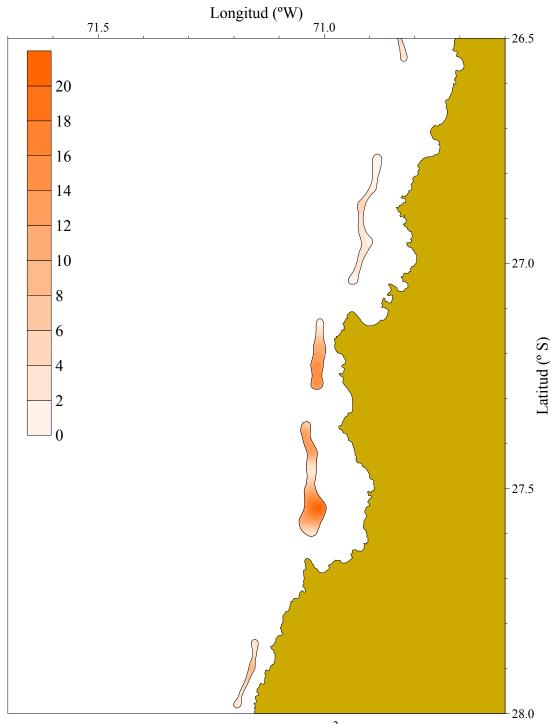


Fig. 50. Distribución espacial de la densidad (tons/km²) de camarón nilon (*H. reedi*) entre la II y VIII Regiones (Focos 5 a 8).

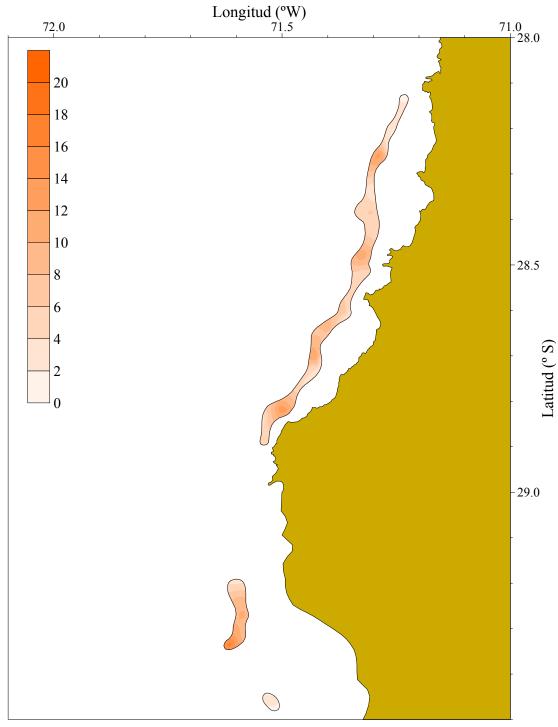


Fig. 51. Distribución espacial de la densidad (tons/km²) de camarón nailon (*H. reedi*) entre la II y VIII Regiones (Focos 9 a 11).

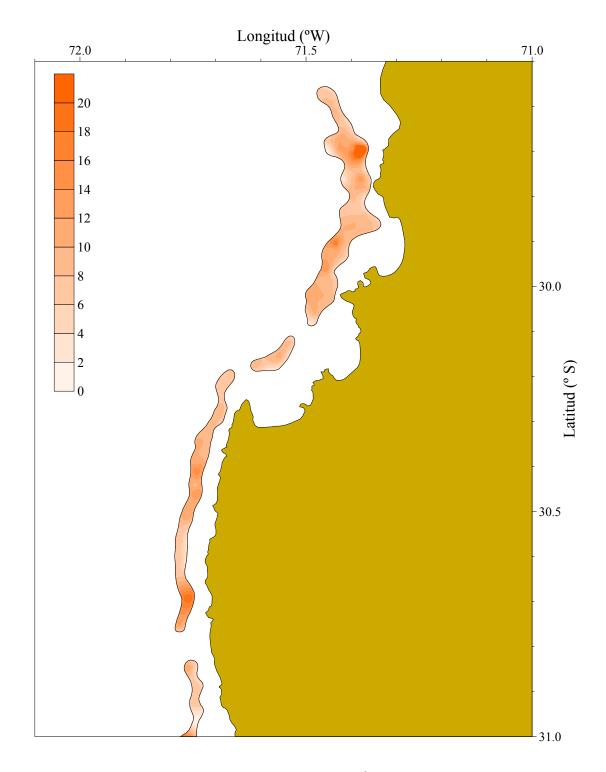


Fig. 52. Distribución espacial de la densidad (tons/km²) de camarón nailon (*H. reedi*) entre la II y VIII Regiones (Focos 12 a 15).

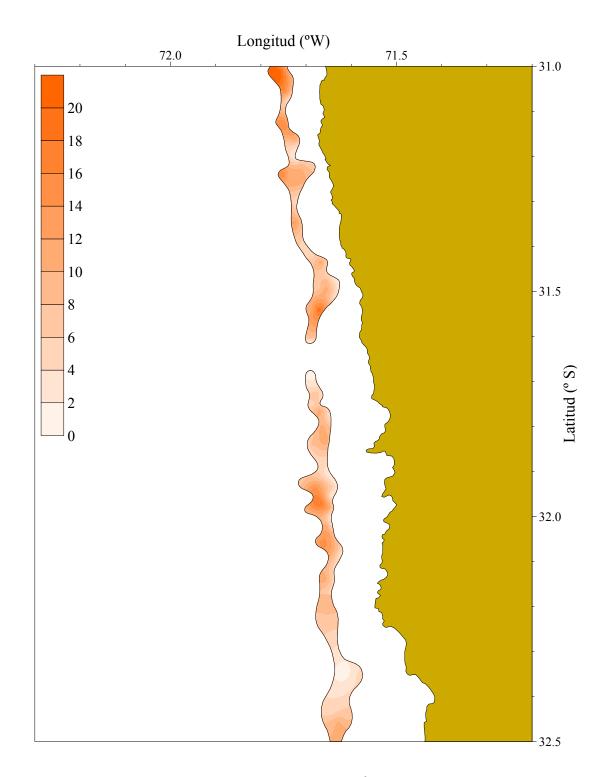


Fig. 53. Distribución espacial de la densidad (tons/km²) de camarón nailon (*H. reedi*) entre la II y VIII Regiones (Focos 15 a 16).

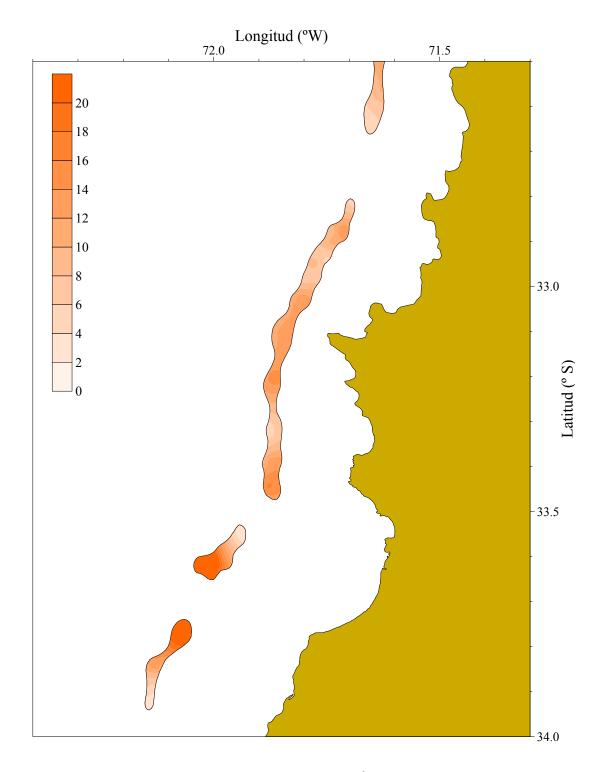


Fig. 54. Distribución espacial de la densidad (tons/km²) de camarón nailon (*H. reedi*) entre la II y VIII Regiones (Focos 16 a 19).

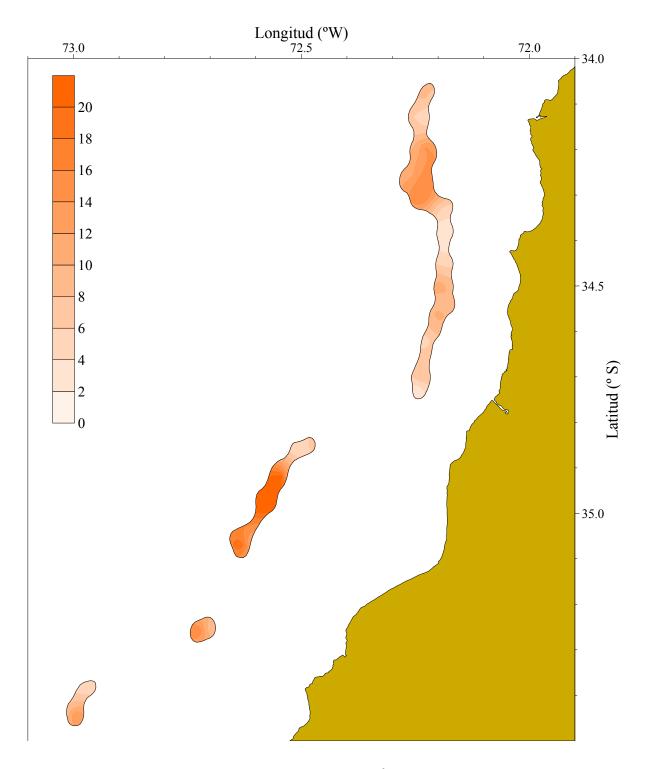


Fig. 55. Distribución espacial de la densidad (tons/km²) de camarón nailon (*H. reedi*) entre la II y VIII Regiones (Focos 20 a 23).

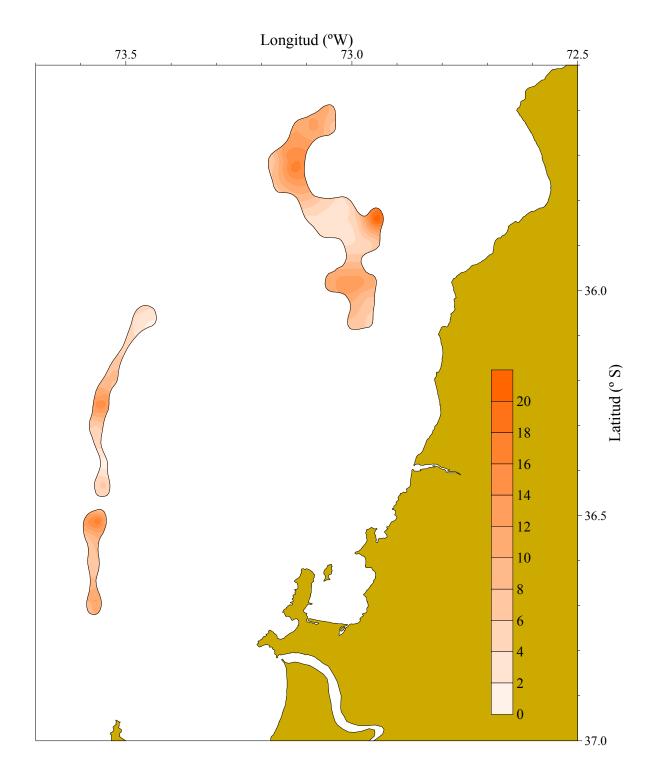


Fig. 56. Distribución espacial de la densidad (tons/km²) de camarón nailon (*H. reedi*) entre la II y VIII Regiones (Focos 24 a 26).

Anexo 6. Biomasa (tons) y abundancia (miles de ejemplares) de camarón nailon por caladero, sexo, dentro y fuera del ARPA y Región

ANEXO 6

BIOMASA (TONS) Y ABUNDANCIA
(MILES DE EJEMPLARES) DE
CAMARÓN NAILON, POR
CALADERO, SEXO, DENTRO Y
FUERA DEL ARPA Y REGIÓN.

Anexo 6.1. Biomasa (tons) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MC		CALADERO												
MC	1	2	3	4	5	6	7	8	9	10	11	12	13	
10,5														
11,5						ĺ								
12,5												0,244		
13,5												0,247		
14,5		0,039				0,146		0,078				0,538		
15,5		0,049			0,038		0,140					0,846		
16,5		0,239				0,427		0,232	0,080			1,821	0,222	
17,5		0,072			0,108		0,407		0,157			3,538		
18,5		0,171			0,674	0,299	1,184	0,496	1,484			8,221	0,479	
19,5		0,101			0,793	1,395	3,099	0,972	4,825			22,894	1,132	
20,5		2,266			1,011	3,634	9,813	3,178	7,770			41,203	4,423	
21,5		3,322			1,707	8,361	10,640	2,894	22,913			60,874	5,403	
22,5		5,284			3,026	19,111	16,526	5,450	27,976			84,241	6,244	
23,5		13,973			3,504	21,110	16,811	4,158	35,200			97,177	5,803	
24,5		11,118			2,171	25,901	11,827	2,365	29,443			106,161	4,286	
25,5		15,231			0,547	32,197	10,218	4,908	26,863			110,060	5,310	
26,5		8,335			0,221	37,767	6,542	2,513	26,254			85,216	9,501	
27,5		5,448				20,096	10,398	1,127	18,243			55,505	5,063	
28,5		2,037				10,628	0,920	0,630	12,761			30,040	0,630	
29,5		0,752				3,528	0,975		10,238			12,012	0,703	
30,5		1,263							3,448			1,477		
31,5									1,644			1,630		
32,5														
33,5												0,983		
34,5						ĺ								
35,5												1,173		
36,5														
37,5														
38,5														
>39,5														
Total	0,000	69,700	0,000	0,000	13,800	184,600	99,500	29,001	229,299	0,000	0,000	726,101	49,199	

Anexo 6.2. Biomasa (tons) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MC		C A L A D E R O													
MC	14	15	16	17	18	19	20	21	22	23	24	25	26		
10,5															
11,5															
12,5															
13,5															
14,5	0,337									***************************************					
15,5	0,246														
16,5	1,183									***************************************					
17,5	1,054									***************************************					
18,5	0,689	0,112								***************************************					
19,5	4,500	0,449								***************************************					
20,5	9,862	0,818								***************************************					
21,5	19,678	1,372								***************************************					
22,5	39,829	13,039		0,608						***************************************					
23,5	72,436	30,737		0,693						***************************************					
24,5	107,862	51,883		0,785											
25,5	134,305	63,665		6,198						***************************************					
26,5	143,221	86,887		8,944											
27,5	134,116	43,982		6,663											
28,5	56,148	33,487		8,652											
29,5	21,604	17,901		2,741											
30,5	6,550	10,544		1,515											
31,5	1,963	4,113													
32,5	0,717	2,552													
33,5		2,241													
34,5															
35,5															
36,5		0,787													
37,5		3,287													
38,5		0,944													
>39,5															
Total	756,300	368,800	0,000	36,799	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		

Anexo 6.3. Biomasa (tons) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MC		CALADERO												
MC -	1	2	3	4	5	6	7	8	9	10	11	12	13	
10,5														
11,5												0,098		
12,5		0,032							0,033			0,185		
13,5		0,040							0,042			0,230	0,074	
14,5		0,098			0,115	0,178						0,564		
15,5		0,060			0,089		0,169	0,116	0,258			1,138		
16,5					0,114	1,269			0,235			2,858		
17,5		0,344			0,333	1,195	0,241		0,590			7,254	0,479	
18,5		1,628			0,153	0,697	0,284	0,390	2,833			8,325	0,378	
19,5		3,339			0,614	0,404	2,954	1,138	5,954			26,882	1,107	
20,5		4,431			0,646	2,323	3,458	2,109	11,110			41,263	1,804	
21,5		13,281			1,368	7,433	6,613	3,642	28,522			65,230	4,168	
22,5		27,564			3,489	8,445	9,939	3,473	48,868			101,521	7,178	
23,5		37,332			1,525	17,724	4,503	1,975	71,889			113,746	6,243	
24,5		41,686			2,626	23,001	7,673	3,578	71,699			149,462	7,975	
25,5		27,717			1,647	24,036	2,104	5,038	99,100			140,587	9,013	
26,5		19,367			1,551	22,970	6,328	9,604	120,722			169,751	5,070	
27,5		13,535			3,368	30,825	12,461	5,679	95,665	•		128,575	6,310	
28,5		6,409			1,394	28,230	14,659	5,617	59,644			121,461	9,857	
29,5		6,705				33,729	13,003	4,671	35,563	•		83,464	11,742	
30,5		3,710			0,346	12,836	3,592	6,882	32,441			47,263	2,602	
31,5		4,113				12,507	1,319	0,948	10,299	•		18,821		
32,5					0,423	6,835		1,041	9,205	•		8,846		
33,5		1,238				1,863			2,767	•		1,075		
34,5									2,027				***************************************	
35,5		2,972							3,333					
36,5						ĺ								
37,5						İ								
38,5													***************************************	
>39,5									······				***************************************	
Total	0,000	215,601	0,000	0,000	19,801	236,500	89,300	55,901	712,799	0,000	0,000	1238,599	74,000	

Anexo 6.4. Biomasa (tons) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MG						СА	LADEI	R O					
MC -	14	15	16	17	18	19	20	21	22	23	24	25	26
10,5													
11,5													
12,5	0,055												
13,5	0,135												
14,5	0,246												
15,5	0,493												
16,5	0,937												
17,5	3,031												
18,5	1,607	0,300											
19,5	3,349	0,504											
20,5	7,273	0,991											
21,5	13,195	2,331											
22,5	19,151	5,858		0,646									
23,5	30,416	12,463		0,736									
24,5	39,483	20,980		4,168									
25,5	44,586	30,497		5,640									
26,5	91,027	71,480		17,940									
27,5	114,742	121,585		16,519									
28,5	136,650	116,689		39,425									
29,5	173,891	98,290		24,792									
30,5	118,466	48,430		16,130									
31,5	69,568	37,359		19,563									
32,5	33,702	12,772		1,955									
33,5	9,397	9,039		4,287									
34,5		2,438											
35,5													
36,5		2,890											
37,5													
38,5													
>39,5													
Total	911,400	594,896	0,000	151,801	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Anexo 6.5. Biomasa (tons) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MC	C A L A D E R O													
MC -	1	2	3	4	5	6	7	8	9	10	11	12	13	
10,5														
11,5										0,042				
12,5			0,007		0,011				0,040	0,054				
13,5					0,022				0,051	0,070		0,062		
14,5	0,033			0,042	0,009				0,065					
15,5	0,082		0,017	0,136	0,092		0,141		0,162	0,542		0,095		
16,5	0,050		0,076	0,171	0,351		0,514		0,524	0,927		0,399		
17,5			0,195	0,300	1,685		0,822		1,031	0,639	0,374	0,824	0,305	
18,5	0,072		0,127	0,527	3,816		2,440		2,806	2,866		2,772	1,272	
19,5	0,254		0,210	0,836	4,438		1,149		3,470	4,751	1,059	7,213	1,933	
20,5	0,595		0,633	2,250	3,145		4,359		10,329	6,640	1,243	19,639	6,297	
21,5	0,808		0,573	2,969	4,720		10,103		18,861	14,855		31,818	5,568	
22,5	2,000		0,756	7,927	3,302		28,179		38,836	21,128		42,443	6,772	
23,5	3,062		1,482	16,076	2,730		36,338		43,973	22,641	2,889	48,386	6,609	
24,5	2,795		1,114	21,536	1,454		27,948		54,623	26,353		39,276	1,775	
25,5	2,975		0,562	20,270	0,654		38,225		31,372	21,936	2,503	43,701	0,504	
26,5	1,121		0,569	14,259	0,742		27,470		26,063	15,739	2,832	47,216	1,709	
27,5	0,756		0,179	6,321	0,228		26,643		15,264	6,818		37,363	4,485	
28,5	0,282			1,874			22,319		3,646	2,293		21,404	2,871	
29,5	0,315			0,305			3,104		4,085	1,708		6,485		
30,5							1,147					2,079		
31,5												1,124		
32,5												2,045		
33,5														
34,5														
35,5														
36,5														
37,5														
38,5												1,356		
>39,5									\$					
Total	15,200	0,000	6,500	95,799	27,399	0,000	230,901	0,000	255,201	150,002	10,900	355,700	40,100	

Anexo 6.6. Biomasa (tons) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MC						C A	LADE	R O					
MC -	14	15	16	17	18	19	20	21	22	23	24	25	26
10,5													
11,5													
12,5													
13,5													
14,5			0,091				0,076		0,112		0,202		
15,5		0,127		0,118			0,276				0,170		
16,5							0,221		0,163			0,179	0,294
17,5			0,165	0,170			0,917	0,357	0,194		0,524		0,349
18,5		0,221	0,658				1,388	0,420	0,456		1,991	0,125	0,411
19,5			1,545	0,235	0,212		3,486	1,957	0,798		3,520	0,585	1,198
20,5		1,218	7,048	1,090	0,498	0,496	7,284		0,308		6,143	0,846	4,436
21,5		4,595	22,644	6,601	2,609	3,420	12,769	2,603	2,123	0,707	22,868	1,361	9,878
22,5		15,901	50,578	27,739	9,718	13,088	41,089	10,406	2,828	0,808	53,883	1,332	17,830
23,5		39,252	104,027	69,779	21,942	28,244	97,990	38,822	11,010	4,890	137,392	7,311	26,855
24,5		112,905	183,518	115,338	54,515	38,884	162,066	83,874	34,194	15,534	229,464	15,659	41,061
25,5		132,841	220,948	178,805	84,409	69,207	213,592	162,825	38,431	34,529	323,574	36,799	60,833
26,5		130,142	227,802	203,046	105,020	67,131	197,053	184,581	37,137	36,464	322,410	51,915	49,289
27,5		123,978	158,467	203,227	68,625	59,999	204,610	174,965	38,479	34,344	285,587	78,597	56,232
28,5		55,647	90,772	161,048	29,906	37,792	109,994	146,766	30,622	18,792	216,167	74,397	35,562
29,5		28,621	37,856	83,614	7,948	14,624	69,004	77,055	16,932	10,688	112,368	58,279	32,105
30,5		11,652	21,989	35,887	4,420	7,914	49,944	34,336	7,859	2,618	56,691	41,567	20,348
31,5		4,688	4,081	11,859	0,980		31,007	5,957	1,079	1,438	17,200	16,609	7,777
32,5		1,293		3,256			8,616	2,176	1,183	0,788	10,733	7,799	5,325
33,5		1,422	0,913	1,189			2,086		1,292			7,100	
34,5											2,536	1,547	
35,5							1,035					1,682	
36,5									•		1,495	0,912	
37,5													1,618
38,5													
>39,5				***************************************						***************************************	1,883		
Total	0,000	664,503	1133,102	1103,001	390,802	340,799	1214,503	927,100	225,200	161,600	1806,801	404,601	371,401

Anexo 6.7. Biomasa (tons) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MC						СА	LADEI	R O					
MC -	1	2	3	4	5	6	7	8	9	10	11	12	13
10,5					0,005								
11,5			0,008		0,006								
12,5				0,016	0,087					0,139		0,062	
13,5			0,013	0,021	0,055		0,229		0,130			0,077	
14,5			0,043	0,081	0,206		0,141		0,081	0,108		0,065	
15,5			0,035	0,309	0,421		0,342		0,450	0,265		0,321	0,126
16,5			0,109	0,257	0,426		0,616		0,637	0,959		0,752	0,304
17,5			0,127	0,316	1,902		0,732		1,459	0,573		2,482	0,726
18,5	0,169		0,180		2,500		0,862		2,559	2,715	1,057	5,174	1,287
19,5	0,297		0,106	1,784	3,377		2,347		3,685	9,563	1,861	11,509	5,031
20,5	1,150		0,205	1,484	4,880		4,664		5,392	15,166	1,445	18,400	4,391
21,5	3,320		0,715	3,522	2,914		12,973		18,795	18,265	1,672	30,500	7,779
22,5	6,862		1,012	5,314	2,823		17,403		24,703	39,113	0,961	33,828	12,038
23,5	8,179		1,557	10,158	1,844		32,028		54,468	40,946	2,198	40,987	8,422
24,5	6,125		1,408	12,687	3,174		29,002		49,216	36,386		43,867	15,101
25,5	3,349		1,511	15,272	4,583		53,462		46,537	53,882	1,414	47,606	7,395
26,5	3,013		0,973	10,532	7,419		74,943		32,314	34,093	1,592	62,250	6,400
27,5	1,968		1,202	14,722	7,064		74,406		21,149	25,996		70,070	11,470
28,5	1,569		2,265	9,142	3,954		87,963		20,273	23,061		59,933	7,999
29,5			0,839	5,872	3,261		51,632		11,795	13,308		60,215	13,340
30,5			0,620	2,340	2,101		46,915		5,923	3,163		30,676	4,927
31,5			0,171	0,439			8,380		1,877			10,327	3,265
32,5				0,983			6,136		2,074			3,552	1,198
33,5				0,549			6,722					1,711	
34,5									1,575				
35,5													
36,5									1,506				
37,5													
38,5													
>39,5													
Total	36,001	0,000	13,099	95,800	53,002	0,000	511,898	0,000	306,598	317,701	12,200	534,364	111,199

Anexo 6.8. Biomasa (tons) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MC						C A	LADE	R O					
MC	14	15	16	17	18	19	20	21	22	23	24	25	26
10,5													
11,5		0,063											
12,5		0,160		0,068								0,046	
13,5													
14,5		0,123	0,094				0,083				0,108		0,108
15,5							0,302					0,084	
16,5		0,179					0,242	0,321	0,356		0,695		0,161
17,5			0,630				1,152				0,378	0,120	0,194
18,5			1,382				1,425	0,446			1,783	0,283	0,231
19,5		1,167	2,023	0,750			2,781	0,519	0,291		1,484	0,330	1,633
20,5		0,677	9,401	1,450		0,504	6,548	0,601	0,337		4,892	0,382	5,095
21,5		1,948	14,496	6,687	1,603	1,874	7,860	0,690		0,253	12,579	0,658	4,810
22,5		4,903	31,522	18,003	7,804	5,458	16,677	2,363	0,444	0,290	27,364	0,502	10,679
23,5		16,229	72,492	51,480	16,272	14,874	49,894	8,048	1,514	0,991	58,387	7,417	12,254
24,5		32,724	135,740	83,056	38,755	34,717	114,634	35,358	5,142	6,370	101,548	10,649	24,610
25,5		69,205	221,196	125,988	69,888	68,979	156,740	71,555	7,080	11,839	178,181	19,978	23,497
26,5		97,216	292,095	148,336	86,863	93,482	179,828	110,621	6,496	19,954	220,269	36,231	51,666
27,5		137,772	257,156	179,848	114,548	77,329	157,349	129,017	5,644	19,136	227,101	41,352	22,607
28,5		100,110	206,858	183,939	107,859	93,122	171,952	114,967	4,486	14,811	221,562	34,360	45,236
29,5		132,011	218,146	163,472	80,227	87,135	149,826	125,518	9,947	24,999	270,674	50,391	33,329
30,5		69,629	128,415	102,364	52,306	45,337	109,360	78,856	13,191	17,475	188,220	30,916	28,087
31,5		57,230	119,150	106,532	36,915	18,859	93,854	61,354	4,843	8,033	207,231	38,122	19,929
32,5		26,753	63,796	55,657	29,759	13,657	65,957	23,203	1,330	2,651	109,840	34,377	23,402
33,5		10,257	22,277	22,881	9,592		45,753	7,614			64,418	22,090	7,585
34,5			1,331	2,780	1,510	2,772	31,652	5,538			20,070	14,293	3,334
35,5		1,745	1,137	1,516			14,472	3,013			6,399	2,919	3,654
36,5			1,231				7,620				5,225		
37,5			1,329	1,791			1,988				1,892		
38,5							1,552						
>39,5													
Total	0,000	760,101	1801,897	1256,598	653,901	558,099	1389,501	779,602	61,101	126,802	1930,300	345,500	322,101

Anexo 6.9. Abundancia (miles de ejemplares) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MC						СА	LADEI	R O					
MC	1	2	3	4	5	6	7	8	9	10	11	12	13
10,5													
11,5										-			
12,5												330,2	
13,5												264,2	
14,5		37,0				118,5		72,0				463,0	
15,5		37,6			34,0		105,1					594,5	
16,5		150,3				237,1		143,6	58,1			1057,5	137,3
17,5		37,6			64,8		209,9		93,8			1718,3	
18,5		74,8			337,3	118,7	514,1	215,4	737,6			3370,6	205,9
19,5		37,4			333,9	474,2	1143,1	358,5	2014,6			7996,5	411,8
20,5		715,7			361,5	1066,6	3100,5	1004,1	2750,4			12358,4	1372,3
21,5		902,0			522,0	2133,5	2900,8	789,0	6928,6	-		15795,0	1440,8
22,5		1242,1			797,4	4266,8	3914,3	1290,9	7279,7	-		19033,2	1441,0
23,5		2861,0			800,7	4148,2	3479,8	860,7	7933,3	-		19231,5	1166,4
24,5		1994,6			432,8	4503,7	2151,9	430,3	5781,1			18504,6	754,7
25,5		2406,9			95,6	4977,9	1642,5	788,9	4621,2	-		16984,6	823,4
26,5		1165,7			34,1	5215,0	933,5	358,6	3977,3			11697,5	1303,7
27,5		677,5				2489,0	1323,1	143,4	2445,1			6807,1	617,5
28,5		226,2				1185,2	104,8	71,8	1519,9			3304,4	68,6
29,5		74,8				355,5	99,8		1088,1			1189,5	68,6
30,5		113,1							328,2			132,2	
31,5									140,7			132,2	
32,5													
33,5												66,1	
34,5													
35,5												66,1	
36,5										-			
37,5													
38,5													
>39,5													
Total	0,0	12754,3	0,0	0,0	3814,1	31289,8	21623,2	6527,2	47697,6	0,0	0,0	141097,2	9812,1

Anexo 6.10. Abundancia (miles de ejemplares) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MC						СА	LADE	R O					
MC	14	15	16	17	18	19	20	21	22	23	24	25	26
10,5													
11,5										***************************************			
12,5										***************************************			
13,5													
14,5	252,6									***************************************			
15,5	151,7									***************************************			
16,5	607,3									***************************************			
17,5	455,5									***************************************			
18,5	253,0	44,0								***************************************			
19,5	1416,4	153,8								***************************************			
20,5	2681,3	242,6								***************************************			
21,5	4654,2	346,5											
22,5	8246,2	2834,3		123,4									
23,5	13203,8	5781,2		123,4	-								
24,5	17402,7	8518,3		123,4									
25,5	19274,5	9168,2		864,1									
26,5	18364,0	10981,7		1110,9									
27,5	15429,8	4932,2		740,6									
28,5	5817,8	3304,5		864,0									
29,5	2023,6	1589,9		246,8									
30,5	556,5	824,6		123,4									
31,5	151,7	285,6											
32,5	50,6	159,4											
33,5		126,3											
34,5													
35,5													
36,5		33,1											
37,5		126,2											
38,5		33,2											
>39,5													
Total	110993,4	49485,6	0,0	4320,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Anexo 6.11. Abundancia (miles de ejemplares) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MC						C A	LADE	R O					
MC	1	2	3	4	5	6	7	8	9	10	11	12	13
10,5													
11,5													
12,5												132,6	
13,5		38,1							46,5			197,9	
14,5		37,9							46,7			197,9	69,0
15,5		75,2			102,8	118,7						396,3	
16,5		37,7			64,8		104,6	71,8	187,2			660,9	
17,5					68,4	592,7			140,4			1388,1	
18,5		150,5			166,7	474,2	104,6		293,2			2974,2	205,9
19,5		602,5			64,4	236,9	104,8	143,9	1182,9			2907,8	137,5
20,5		1054,6			219,5	118,6	933,3	359,6	2107,6			8063,0	343,5
21,5		1203,1			197,6	592,8	942,7	575,0	3359,5			10706,5	481,1
22,5		3122,0			360,5	1659,5	1566,3	862,6	7421,8			14737,9	961,9
23,5		5643,7			797,3	1659,5	2057,3	718,9	11013,7			20091,2	1442,8
24,5		6697,5			304,0	3081,9	819,3	359,4	14115,3			19826,7	1099,3
25,5		6587,5			459,2	3556,1	1233,4	575,1	12334,3			23065,1	1236,6
26,5		3876,5			253,9	3319,0	300,2	718,9	15012,9			19298,1	1236,7
27,5		2408,5			211,8	2844,9	805,2	1222,0	16180,4			20818,1	618,4
28,5		1502,9			409,1	3437,6	1419,6	647,0	11394,1			14143,1	687,1
29,5		637,8			151,2	2844,9	1500,9	575,1	6339,0			12028,2	961,8
30,5		600,3				3082,0	1200,8	431,3	3385,0			7468,1	1030,5
31,5		299,9			30,3	1066,8	300,2	575,1	2775,6			3833,2	206,1
32,5		301,1				948,3	100,1	71,9	794,7			1387,9	
33,5					30,3	474,1		71,9	642,5			594,8	
34,5		75,0				118,5			175,2			66,1	
35,5									116,8				
36,5		150,5							175,2				
37,5													
38,5													
>39,5													
Total	0,0	35102,9	0,0	0,0	3891,6	30227,1	13493,3	7979,4	109240,7	0,0	0,0	184983,9	10718,3

Anexo 6.11. Abundancia (miles de ejemplares) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MC						C A	LADEI	R O					
MC	1	2	3	4	5	6	7	8	9	10	11	12	13
10,5													
11,5													
12,5												132,6	
13,5		38,1							46,5			197,9	
14,5		37,9							46,7			197,9	69,0
15,5		75,2			102,8	118,7						396,3	
16,5		37,7			64,8		104,6	71,8	187,2			660,9	
17,5					68,4	592,7			140,4			1388,1	
18,5		150,5			166,7	474,2	104,6		293,2			2974,2	205,9
19,5		602,5			64,4	236,9	104,8	143,9	1182,9			2907,8	137,5
20,5		1054,6			219,5	118,6	933,3	359,6	2107,6			8063,0	343,5
21,5		1203,1			197,6	592,8	942,7	575,0	3359,5			10706,5	481,1
22,5		3122,0			360,5	1659,5	1566,3	862,6	7421,8			14737,9	961,9
23,5		5643,7			797,3	1659,5	2057,3	718,9	11013,7			20091,2	1442,8
24,5		6697,5			304,0	3081,9	819,3	359,4	14115,3			19826,7	1099,3
25,5		6587,5			459,2	3556,1	1233,4	575,1	12334,3			23065,1	1236,6
26,5		3876,5			253,9	3319,0	300,2	718,9	15012,9			19298,1	1236,7
27,5		2408,5			211,8	2844,9	805,2	1222,0	16180,4			20818,1	618,4
28,5		1502,9			409,1	3437,6	1419,6	647,0	11394,1			14143,1	687,1
29,5		637,8			151,2	2844,9	1500,9	575,1	6339,0			12028,2	961,8
30,5		600,3				3082,0	1200,8	431,3	3385,0			7468,1	1030,5
31,5		299,9			30,3	1066,8	300,2	575,1	2775,6			3833,2	206,1
32,5		301,1				948,3	100,1	71,9	794,7			1387,9	
33,5					30,3	474,1		71,9	642,5			594,8	
34,5		75,0				118,5			175,2			66,1	
35,5									116,8				
36,5		150,5							175,2				
37,5													
38,5									•••••				
>39,5													
Total	0,0	35102,9	0,0	0,0	3891,6	30227,1	13493,3	7979,4	109240,7	0,0	0,0	184983,9	10718,3

Anexo 6.12. Abundancia (miles de ejemplares) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **dentro** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MC						C A	LADE	R O					
MC	14	15	16	17	18	19	20	21	22	23	24	25	26
10,5													
11,5													
12,5													
13,5	50,8									\$10000000000000000000000000000000000000			
14,5	101,2												
15,5	151,7												
16,5	253,1												
17,5	404,9												
18,5	1113,1												
19,5	505,8	99,4											
20,5	910,5	143,1											
21,5	1720,2	242,7											
22,5	2731,9	495,9											
23,5	3490,9	1089,1		123,3									
24,5	4907,4	2036,1		123,3									
25,5	5666,3	3027,9		616,3									
26,5	5716,9	3906,9		739,6									
27,5	10472,5	8163,5		2095,3									
28,5	11889,1	12430,7		1725,6									
29,5	12799,7	10720,2		3697,7									
30,5	14772,8	8143,3		2095,3									
31,5	9157,1	3630,7		1232,5									
32,5	4907,4	2542,1		1355,8									
33,5	2175,4	791,1		123,3									
34,5	556,5	511,1		246,5									
35,5		126,2											
36,5													
37,5		126,2											
38,5										510000000000000000000000000000000000000			
>39,5													
Total	94455,5	58226,2	0,0	14174,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Anexo 6.13. Abundancia (miles de ejemplares) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MG						C A	LADEI	R O					
MC -	1	2	3	4	5	6	7	8	9	10	11	12	13
10,5													
11,5										85,9			
12,5			10,6		19,9				72,6	84,5			
13,5					30,9				71,8	85,6		66,3	
14,5	31,3			56,5	10,0				72,3				
15,5	62,9		13,0	142,3	82,2		105,9		144,5	425,4		66,8	
16,5	31,4		47,8	141,4	255,5		318,1		380,3	595,4		231,7	
17,5			101,7	198,8	1011,4		423,9		615,9	339,9	198,9	400,2	156,5
18,5	31,5		55,6	283,5	1909,9		1059,5		1394,6	1275,5		1136,5	546,9
19,5	94,0		77,7	368,9	1868,6		423,8		1448,9	1785,4	398,0	2519,4	703,2
20,5	187,9		199,9	822,7	1124,4		1377,3		3656,3	2125,5	397,9	5890,5	1953,8
21,5	219,4		155,6	907,7	1443,4		2754,4		5703,4	4081,0		8255,8	1484,8
22,5	470,1		177,7	2042,5	870,1		6674,3		10105,6	5016,1		9589,5	1562,9
23,5	626,9		303,4	3517,7	623,9		7521,8		9910,5	4676,0	596,7	9575,7	1328,4
24,5	501,4		199,9	4028,4	289,9		5085,2		10725,1	4761,2		6846,1	312,6
25,5	470,1		88,8	3262,5	114,4		6144,5		5396,9	3485,8	397,7	6744,0	78,2
26,5	156,8		79,6	1985,9	114,4		3919,8		3948,3	2210,5	397,8	6481,3	234,5
27,5	94,0		22,3	766,0	31,1		3390,1		2045,8	850,2		4582,2	547,0
28,5	31,3			198,6			2542,6		434,3	255,0		2354,4	312,6
29,5	31,4			28,4			317,8		434,2	170,0		642,2	
30,5							105,9					186,0	
31,5												91,2	
32,5												150,8	
33,5													
34,5													
35,5													
36,5													
37,5													
38,5												59,7	
>39,5					,								
Total	3040,6	0,0	1533,6	18751,8	9799,9	0,0	42164,9	0,0	56561,3	32308,9	2386,9	65870,2	9221,2

Anexo 6.14. Abundancia (miles de ejemplares) de **machos** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MC						C A	LADE	R O					
MC -	14	15	16	17	18	19	20	21	22	23	24	25	26
10,5													
11,5													
12,5													
13,5													
14,5			73,4				54,1		79,8		143,9		
15,5		83,1		73,2			161,8				99,6		
16,5							108,0		79,6			87,4	143,6
17,5			73,8	73,3			377,2	146,9	79,8		215,5		143,6
18,5		83,0	248,2				485,3	146,9	159,4		696,2	43,7	143,7
19,5			496,6	73,2	70,2		1045,3	586,8	239,3		1055,5	175,4	359,2
20,5		331,5	1944,1	292,4	140,6	128,5	1887,0		79,8		1591,5	219,2	1149,2
21,5		1077,1	5368,7	1535,1	632,6	771,0	2878,5	586,8	478,6	159,4	5155,1	306,8	2226,8
22,5		3231,3	10396,7	5628,9	2038,6	2583,5	8110,7	2054,1	558,2	159,5	10636,2	262,9	3519,5
23,5		6959,6	18715,6	12427,2	4006,9	4910,3	17035,8	6749,3	1914,1	850,1	23886,0	1271,0	4668,8
24,5		17564,6	29011,5	18129,2	8716,8	5985,8	24948,6	12911,6	5263,9	2391,3	35323,9	2410,6	6321,0
25,5		18227,4	30942,6	24927,5	11880,2	9479,1	29255,2	22301,7	5263,8	4729,4	44319,1	5040,3	8332,1
26,5		15824,7	28284,8	25220,0	13075,2	8217,8	24122,0	22595,3	4546,1	4463,7	39467,5	6355,1	6033,7
27,5		13421,9	17565,9	22588,3	7592,1	6591,1	22477,2	19220,6	4227,1	3772,8	31372,8	8634,2	6177,3
28,5		5385,4	8998,7	16082,3	2952,5	3740,3	10886,2	14525,5	3030,7	1859,9	21394,2	7363,1	3519,6
29,5		2485,5	3400,1	7529,4	703,0	1308,8	6175,4	6895,9	1515,3	956,5	10056,2	5215,6	2873,2
30,5		911,4	1762,6	2924,1	351,5	642,5	4054,9	2787,7	638,1	212,6	4602,7	3374,8	1652,0
31,5		331,4	306,5	877,2	70,3		2291,0	440,2	79,7	106,3	1270,9	1227,2	574,6
32,5		82,9		219,3			581,1	146,7	79,8	53,1	723,8	526,0	359,1
33,5		82,9	58,2	73,1			128,8		79,8			438,3	
34,5											143,7	87,6	
35,5							53,9					87,7	
36,5											71,8	43,8	
37,5													71,8
38,5													
>39,5											71,8		
Total	0,0	86083,5	157648,2	138673,7	52230,6	44358,7	157118,1	112096,0	28392,8	19714,5	232297,9	43170,7	48269,0

Anexo 6.15. Abundancia (miles de ejemplares) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 1 a 13.

MG						C A	LADE	R O					
MC	1	2	3	4	5	6	7	8	9	10	11	12	13
10,5												92,0	
11,5					11,9								
12,5			12,1		10,9								
13,5				28,1	122,2					169,9		66,3	
14,5			12,3	28,2	61,1		211,5		144,6			66,3	
15,5			33,0	84,7	184,1		105,9		72,3	84,8		45,7	
16,5			22,0	255,6	306,4		211,6		326,6	170,2		186,4	77,9
17,5			56,9	170,3	255,7		317,7		380,5	510,1		365,2	156,0
18,5			55,6	170,0	952,0		317,8		725,1	255,0		1017,6	312,1
19,5	62,5		66,6		1052,6		318,0		1068,5	1020,3	397,2	1807,2	468,2
20,5	93,8		33,5	652,3	1207,4		741,5		1304,4	3061,1	595,7	3452,0	1561,0
21,5	312,2		55,7	453,7	1492,4		1271,5		1630,5	4166,5	397,0	4774,3	1170,9
22,5	780,4		168,1	907,5	767,9		3072,7		4890,7	4336,4	397,0	6891,1	1795,3
23,5	1405,0		207,2	1162,8	645,1		3602,4		5567,5	8077,9	198,5	6694,6	2419,7
24,5	1467,3		279,3	1900,1	367,6		5827,5		10694,7	7397,7	397,1	7144,3	1483,0
25,5	967,9		222,5	2042,0	555,0		4662,0		8466,5	5782,0		6769,6	2341,6
26,5	468,4		211,3	2127,0	706,5		7628,7		7050,0	7567,7	198,6	6534,8	1014,7
27,5	374,7		121,0	1276,3	1013,0		9535,9		4331,1	4251,5	198,5	7634,3	780,6
28,5	218,5		133,5	1559,9	858,0		8476,4		2518,9	2891,0		7707,6	1248,9
29,5	156,2		225,4	850,8	429,0		9006,1		2154,6	2295,8		5935,1	780,5
30,5			75,1	482,1	317,2		4767,9		1122,7	1190,4		5387,9	1170,8
31,5			50,1	170,2	183,9		3920,4		506,8	255,1		2487,9	390,3
32,5			12,5	28,4			635,7		144,8			761,5	234,2
33,5				56,7			423,8		144,8			238,8	78,0
34,5				28,4			423,8					105,2	
35,5									90,8				
36,5													
37,5									72,4				
38,5													
>39,5													
Total	6307,1	0,0	2053,7	14435,1	11499,6	0,0	65478,9	0,0	53408,8	53483,4	2779,6	76165,8	17483,7

Anexo 6.16. Abundancia (miles de ejemplares) de **hembras** de camarón nailon (*Heterocarpus reedi*) por caladero **fuera** de las 5 mn de reserva artesanal entre la II y VIII Región. Enfoque geoestadístico. Foco 14 a 26.

MC						C A	LADE	R O					
MC -	14	15	16	17	18	19	20	21	22	23	24	25	26
10,5													
11,5				***************************************									
12,5		82,9											
13,5		165,8		73,4								44,2	
14,5													
15,5		83,1	58,1				54,1				71,7		71,8
16,5							161,8					43,6	
17,5		83,0					107,8	146,8	159,4		314,9		71,7
18,5			232,8				431,3				143,8	43,8	71,9
19,5			438,2				452,4	146,7			574,8	87,8	71,9
20,5		331,3	554,6	219,3			754,9	146,6	79,8		408,8	87,7	431,1
21,5		165,8	2243,1	365,4		128,4	1530,6	146,8	79,7		1160,1	87,7	1149,3
22,5		414,4	3030,7	1462,0	351,5	409,2	1593,4	146,7		53,2	2585,6	131,4	933,8
23,5		911,5	5806,2	3435,7	1476,1	1028,1	2950,1	440,2	79,8	53,2	4906,6	87,7	1796,0
24,5		2651,4	11827,7	8626,0	2671,0	2431,6	7745,1	1320,4	239,0	159,3	9183,2	1139,3	1796,0
25,5		4722,8	19712,5	12280,9	5553,1	4954,6	15696,8	5134,8	717,2	903,0	14084,3	1446,1	3160,8
26,5		8865,6	28723,0	16520,9	8786,5	8637,5	19024,2	9242,4	876,6	1487,3	21897,6	2410,2	2658,0
27,5		11102,8	34051,6	17324,9	9630,0	10321,5	19434,6	12763,5	717,2	2231,0	24091,5	3900,0	5172,3
28,5		14085,7	27017,9	18787,0	11246,7	7562,0	15202,8	13350,3	557,8	1912,3	22201,7	3987,7	2011,5
29,5		9197,1	19657,7	17251,8	9419,2	8099,7	14912,2	10709,5	398,5	1328,0	19433,6	2979,8	3591,9
30,5		10937,1	18813,8	13816,1	6256,0	6767,2	11704,2	10562,8	796,9	2018,5	21378,6	3943,9	2370,7
31,5		5220,0	10082,8	7821,8	3655,2	3155,4	7721,0	6015,0	956,3	1274,8	13432,8	2191,1	1796,0
32,5		3894,3	8541,8	7383,2	2319,7	1180,3	6007,8	4254,5	318,7	531,2	13405,2	2453,9	1149,4
33,5		1657,1	4187,2	3508,8	1687,0	771,1	3839,4	1467,1	79,7	159,4	6459,3	2015,8	1221,2
34,5		580,0	1342,2	1315,8	492,0		2428,8	440,1			3453,5	1183,2	359,2
35,5			73,8	146,2	70,3	128,5	1536,3	293,4			983,5	701,1	143,7
36,5		82,9	58,1	73,1			643,8	146,7			287,4	131,5	143,7
37,5			58,2				311,5				215,5		
38,5			58,2	73,1			74,8				71,8		
>39,5							53,9				5		
Total	0,0	75234,4	196570,4	130485,5	63614,4	55575,2	134373,6	76874,4	6056,4	12111,1	180745,7	29097,3	30171,6

Anexo 6.17. Biomasa (toneladas) de **machos** de camarón nailon (*Heterocarpus reedi*) por región **dentro** y **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico.

MC			DE	NTRO ARI	PA					F	UERA ARP	A		
MC	II	III	IV	V	VI	VII	VIII	II	III	IV	V	VI	VII	VIII
10,5														
11,5										0,042		•		
12,5			0,244					0,007	0,051	0,054				
13,5			0,247						0,073	0,132				
14,5	0,039	0,224	0,875					0,033	0,116	0,091		0,076	0,314	
15,5	0,049	0,178	1,092					0,082	0,548	0,764	0,118	0,276		0,170
16,5	0,239	0,739	3,226					0,085	1,601	1,326		0,221	0,163	0,473
17,5	0,072	0,672	4,592					0,170	3,863	2,307	0,170	0,917	1,075	0,349
18,5	0,171	4,137	9,501					0,199	9,589	7,327	0,462	1,388	2,725	0,678
19,5	0,101	11,084	28,975					0,464	9,893	15,419	1,529	3,416	6,179	1,949
20,5	2,266	25,406	56,306					1,228	20,083	37,477	6,692	7,284	5,299	6,434
21,5	3,322	46,515	87,327					1,381	36,653	70,059	22,051	12,676	24,645	14,988
22,5	5,284	72,089	143,353	0,608				2,756	78,244	119,656	66,992	40,324	62,105	26,466
23,5	13,973	80,783	206,153	0,693				4,418	99,243	185,958	156,177	95,291	179,288	51,325
24,5	11,118	71,707	270,192	0,785				3,909	105,561	299,855	270,556	156,607	352,591	74,807
25,5	15,231	74,733	313,340	6,198				3,537	90,521	335,411	416,851	206,102	541,127	125,946
26,5	8,335	73,297	324,825	8,944				1,598	68,626	342,695	454,848	191,601	550,147	140,195
27,5	5,448	49,864	238,666	6,663				0,935	48,456	271,489	389,965	194,880	507,500	171,942
28,5	2,037	24,939	120,305	8,652				0,282	27,839	140,933	259,365	102,761	397,906	133,068
29,5	0,752	14,741	52,220	2,741				0,315	7,494	57,209	123,383	64,124	214,965	97,606
30,5	1,263	3,448	18,571	1,515					1,147	28,828	55,113	45,821	103,790	63,752
31,5		1,644	7,706							6,856	15,876	28,458	27,550	25,059
32,5			3,269							3,338	3,256	7,995	13,289	15,336
33,5			3,224							1,422	2,102	1,747	1,631	7,100
34,5												•	2,536	1,547
35,5			1,173									1,035		1,682
36,5			0,787									•	1,495	0,912
37,5			3,287									•		1,618
38,5			0,944							1,356		•		
>39,5								, no communication (100 miles)					1,883	
Total	69,700	556,200	1900,400	36,799	0,000	0,000	0,000	21,399	609,601	1930,004	2245,506	1163,000	2998,203	963,402

Anexo 6.18. Biomasa (toneladas) de **hembras** de camarón nailon (*Heterocarpus reedi*) por región **dentro** y **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico.

MC			DE	ENTRO ARI	PA					F	UERA ARP	A		
MC	II	III	IV	V	VI	VII	VIII	II	III	IV	V	VI	VII	VIII
10,5										0,040				
11,5									0,005					
12,5			0,098					***************************************	0,014	0,063				
13,5	0,032	0,033	0,240					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,103	0,361	0,068			0,046
14,5	0,040	0,042	0,439						0,448	0,077				
15,5	0,098	0,293	0,810					0,043	0,509	0,296	0,094	0,083	0,108	0,108
16,5	0,060	0,632	1,631					0,035	1,522	0,712		0,302		0,084
17,5		1,618	3,795					0,085	1,960	2,194		0,242	1,153	0,380
18,5	0,344	2,359	10,764					0,127	4,409	3,781	0,630	1,152	0,378	0,314
19,5	1,628	4,357	10,610					0,349	5,921	10,698	0,917	1,359	2,295	0,514
20,5	3,339	11,064	31,842					0,403	11,193	29,669	2,235	2,781	2,114	2,143
21,5	4,431	19,646	51,331					1,355	16,420	45,336	6,098	6,458	4,663	6,734
22,5	13,281	47,578	84,924					3,982	38,257	66,870	17,846	7,555	10,792	8,611
23,5	27,564	74,214	133,708	0,646				7,568	50,549	108,470	45,160	15,848	27,964	14,507
24,5	37,332	97,616	162,868	0,736				9,108	99,126	141,345	121,832	48,998	64,239	25,991
25,5	41,686	108,577	217,900	4,168				6,899	94,713	186,513	233,336	111,919	141,238	45,651
26,5	27,717	131,925	224,683	5,640				3,428	121,286	295,429	367,857	154,176	260,141	56,820
27,5	19,367	161,175	337,328	17,940				3,281	125,913	376,888	441,583	178,452	349,849	100,620
28,5	13,535	147,998	371,212	16,519				2,268	118,243	395,611	476,159	155,866	370,057	78,702
29,5	6,409	109,544	384,657	39,425				1,569	123,597	303,697	476,193	170,838	348,032	91,495
30,5	6,705	86,966	367,387	24,792					73,399	354,061	411,052	145,597	423,006	98,822
31,5	3,710	56,097	216,761	16,130					57,899	176,062	259,735	105,634	293,435	68,056
32,5	4,113	25,073	125,748	19,563					10,867	131,552	220,348	89,652	277,590	66,502
33,5		17,504	55,320	1,955					9,193	60,735	133,637	60,200	134,330	66,230
34,5	1,238	4,630	19,511	4,287					7,271	16,867	49,851	40,624	74,380	32,456
35,5		2,027	2,438						1,575	1,331	7,062	27,769	28,477	18,641
36,5	2,972	3,333								1,745	2,653	12,118	11,766	6,573
37,5			2,890						1,506		1,231	6,595	6,250	
38,5											3,120	1,432	2,448	
>39,5												1,552		
Total	215,601	1114,301	2818,895	151,801	0,000	0,000	0,000	40,500	975,898	2710,403	3278,697	1347,202	2834,705	790,000

Anexo 6.19. Abundancia (miles de ejemplares) de **machos** de camarón nailon (*Heterocarpus reedi*) por región **dentro** y **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico.

MC			DE	NTRO ARI	PA					F	UERA ARP	A		
	II	III	IV	V	VI	VII	VIII	II	III	IV	V	VI	VII	VIII
10,5													<u></u>	
11,5 12,5									Ç	85,9				
12,5			330,2					10,6	92,5	84,5				
13,5			264,2						102,7	151,9				
14,5	37,0	190,5	715,6					31,3	138,8	73,4		54,1	223,6	
15,5	37,6	139,1	746,2					62,9	487,9	575,3	73,2	161,8		99,6
16,5	150,3	438,7	1802,1					53,5	1121,0	827,1		108,0	79,6	231,1
17,5	37,6	368,5	2173,8					88,7	2263,1	1169,3	73,3	377,2	442,2	143,6
18,5	74,8	1923,0	3873,6					87,1	4647,5	3115,5	174,6	485,3	952,8	237,1
19,5	37,4	4324,3	9978,5					171,7	4110,2	5553,4	492,6	1024,3	1852,8	584,4
20,5	715,7	8283,1	16654,7					387,9	6980,6	11363,3	1841,4	1887,0	1372,8	1666,8
21,5	902,0	13273,9	22236,5					375,0	10808,8	17998,4	5207,7	2857,5	5555,7	3378,7
22,5	1242,1	17549,0	31554,7	123,4				647,9	19692,6	26189,4	13716,1	7959,7	12259,2	5224,2
23,5	2861,0	17222,7	39382,9	123,4				904,6	21599,7	34870,5	28041,8	16566,6	31169,7	8923,0
24,5	1994,6	13299,9	45180,3	123,4				701,3	20128,6	48082,1	42914,2	24108,2	54278,2	11515,9
25,5 26,5	2406,9	12126,2	46250,7	864,1				558,9	14918,3	47309,3	58498,2	28229,3	74116,8	17250,5
	1165,7	10518,4	42346,8	1110,9				223,5	9981,3	42787,0	56780,8	23454,6	67345,7	17161,8
27,5	677,5	6400,6	27786,7	740,6				116,3	6233,1	30102,3	43470,8	21408,3	55750,9	18888,5
28,5	226,2	2881,7	12495,3	864,0				31,3	3175,4	13990,0	25949,2	10170,3	39381,0	13169,8
29,5 30,5	74,8	1543,5	4871,7	246,8				31,4	780,3	5069,0	11146,5	5738,7	19238,0	8735,1
30,5	113,1	328,2	1513,2	123,4					105,9	2278,2	4499,9	3720,1	8426,6	5175,9
31,5		140,7	569,6							496,3	1180,3	2102,7	2035,6	1851,6
32,5			210,0							233,7	219,3	539,2	896,2	1034,3
33,5			192,4							82,9	131,3	107,8	100,7	438,3
34,5													143,7	87,6
35,5			66,1									53,9		87,7
36,5			33,1										71,8	43,8
37,5			126,2											71,8
38,5			33,2							59,7				
>39,5													71,8	
Total	12754,3	110951,9	311388,2	4320,0	0,0	0,0	0,0	4483,7	127368,4	292548,3	294411,2	151114,9	375765,3	116001,1

Anexo 6.20. Abundancia (miles de ejemplares) de **hembras** de camarón nailon (*Heterocarpus reedi*) por región **dentro** y **fuera** de las **5 mn** de reserva artesanal entre la II - VIII Regiones. Enfoque geoestadístico.

MC			DE	ENTRO ARI	PA					F	UERA ARP	A		
MC	II	III	IV	V	VI	VII	VIII	II	Ш	IV	V	VI	VII	VIII
10,5										92,0				
11,5									11,9					
12,5			132,6						23,0	82,9				
13,5	38,1	46,5	248,6						150,3	402,0	73,4			44,2
14,5	37,9	46,7	368,2						457,7	66,3				
15,5	75,2	221,5	548,0					33,0	446,9	213,5	58,1	54,1	71,7	71,8
16,5	37,7	428,4	913,9					22,0	1100,2	434,5		161,8		43,6
17,5		801,5	1793,0					44,3	1136,7	1114,3		107,8	521,9	170,9
18,5	150,5	1038,8	4293,2					55,6	2164,9	1584,8	232,8	431,3	143,8	115,6
19,5	602,5	1732,8	3650,6					129,2	2439,1	3840,3	290,7	431,4	742,5	159,7
20,5	1054,6	3738,6	9460,1					127,3	3905,6	9148,7	626,4	754,9	585,6	568,4
21,5	1203,1	5667,6	13150,5					367,9	4848,1	11928,8	1482,6	1509,6	1109,6	1535,1
22,5	3122,0	11870,7	18927,6					936,1	9651,2	15236,2	3827,7	1533,2	2223,2	1711,2
23,5	5643,7	16246,8	26114,0	123,3				1549,6	11040,4	21549,0	8499,2	2803,5	5030,0	2480,0
24,5	6697,5	18679,9	27869,5	123,3				1634,0	18902,6	24386,4	20125,2	7612,0	10159,3	3929,3
25,5	6587,5	18158,1	32995,9	616,3				1090,2	15825,7	28102,0	33944,1	15327,9	19837,8	6048,2
26,5	3876,5	19604,9	30158,6	739,6				479,4	17712,5	39234,9	47330,5	18721,7	32450,3	6708,3
27,5	2408,5	21264,3	40072,5	2095,3				408,0	16243,9	44408,0	50462,1	19294,9	38977,0	10463,8
28,5	1502,9	17307,3	39150,0	1725,6				251,8	13513,4	41724,7	48585,6	15062,4	36957,7	7440,4
29,5	637,8	11411,2	36510,0	3697,7				156,2	12666,0	28908,3	43468,4	14816,3	31181,9	7615,3
30,5	600,3	8099,1	31414,9	2095,3					6765,1	30345,3	33781,2	11372,6	34108,5	7507,3
31,5	299,9	4747,9	16827,1	1232,5					4831,3	13666,3	19331,2	7456,9	21367,8	4633,1
32,5	301,1	1914,9	8837,4	1355,8					821,5	9243,7	15047,6	5738,3	18256,1	4150,0
33,5		1218,8	3561,4	123,3					625,3	3892,6	8235,5	3504,3	8003,5	3734,0
34,5	75,0	293,8	1133,7	246,5					452,2	980,4	2854,9	2156,5	4016,8	1691,5
35,5		116,8	126,2						90,8	73,8	345,0	1347,8	1415,7	894,5
36,5	150,5	175,2								82,9	131,3	539,1	538,8	275,1
37,5			126,2						72,4		58,2	269,6	257,4	
38,5											131,3	53,9	92,8	
>39,5												53,9		
Total	35102,9	164832,1	348383,8	14174,5	0,0	0,0	0,0	7284,6	145898,6	330742,5	338923,2	131115,7	268049,5	71991,4

10. PLAN DETALLADO DE ASIGNACIÓN DEL PERSONAL PROFESIONAL Y TÉCNICO.

10.1. Total de Horas asignadas

10.1.1. Objetivo específico 1.

Determinar la distribución espacial del recurso, en el área de estudio.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			35	35	20	90
Alex Cortés	40	30	20	10	10	110
Manuel Andrade	40	30	20	10	10	110
Juan Carlos Villarroel	40	30	20	10	10	110
Viviana López	100	30	20			150
Ana Olivares	100	30	20			150
Ximena Bennett		30	30	10		70
Julio Moraga						0
Manuel Berrios						0
Claudia Valenzuela	80	20				100
Sergio Fuentes						0
Daniel Cespedes	80	20				100
TOTAL	480	220	165	75	50	990

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia						0
Luis Cubillos						0
Monica Barros						0
Milton Pedraza						0
N.N. 1						0
N.N. 2						0
TOTAL	0	0	0	0	0	0

CONSULTORA CIMAR

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Rodrigo Grau	50	50	25			125
Danny Rivera	80	20				100
José Zepeda	80	20				100
TOTAL	210	90	25	0	0	325

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid		50	50	30		130
Rubén Alarcón		30	50	30		110
TOTAL	0	80	100	60	0	240

10.1.2. Objetivo específico 2.

Determinar la biomasa vulnerable total (en peso) y la abundancia vulnerable total (en número), según talla y sexo, del recurso en el área de estudio, por región y focos de abundancia, según corresponda.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			30	30	20	80
Alex Cortés	40	30	20	10		100
Manuel Andrade	40	30	20	10		100
Juan Carlos Villarroel	40	30	20	10		100
Viviana López	40	30	20			90
Ana Olivares	40	30	20			90
Ximena Bennett		30	30	10		70
Julio Moraga						0
Manuel Berrios						0
Claudia Valenzuela	80	20				100
Sergio Fuentes						0
Daniel Cespedes	80	20				100
TOTAL	360	220	160	70	20	830

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia			40	60	20	120
Luis Cubillos						0
Monica Barros						0
Milton Pedraza						0
N.N. 1						0
N.N. 2						0
TOTAL	0	0	40	60	20	120

CONSULTORA CIMAR

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Rodrigo Grau	50	50	25			125
Danny Rivera	80	20				100
José Zepeda	80	20				100
TOTAL	210	90	25	0	0	325

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid		20	50	30	20	120
Rubén Alarcón		40	50	30	20	140
TOTAL	0	60	100	60	40	260

10.1.3. Objetivo específico 3.

Determinar la condición reproductiva del camarón nailon, en el área y período de estudio.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			25	30		55
Alex Cortés	20	20	20			60
Manuel Andrade	20	20	20			60
Juan Carlos Villarroel	20	20	20			60
Viviana López	20	20	20			60
Ana Olivares	20	20	20			60
Ximena Bennett		20	20	20		60
Julio Moraga						0
Manuel Berrios						0
Claudia Valenzuela	50					50
Sergio Fuentes						0
Daniel Cespedes	50					50
TOTAL	200	120	145	50	0	515

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia						0
Luis Cubillos						0
Monica Barros						0
Milton Pedraza						0
N.N. 1						0
N.N. 2						0
TOTAL	0	0	0	0	0	0

CONSULTORA CIMAR

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Rodrigo Grau						0
Danny Rivera	50					50
José Zepeda	50					50
TOTAL	100	0	0	0	0	100

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
TOTAL	0	0	0	0	0	0

10.1.4. Objetivo específico 4.

Determinar la composición e importancia relativa de las especies que constituyan fauna acompañante de estos recursos durante los cruceros de evaluación.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			20	30		50
Alex Cortés						0
Manuel Andrade						0
Juan Carlos Villarroel						0
Viviana López						0
Ana Olivares						0
Ximena Bennett						0
Julio Moraga						0
Manuel Berrios						0
Claudia Valenzuela	50					50
Sergio Fuentes						0
Daniel Cespedes	50					50
TOTAL	100	0	20	30	0	150

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia			90	90	20	200
Luis Cubillos						0
Monica Barros		100	70	60	20	250
Milton Pedraza	50	50	50			150
N.N. 1		100	90	60		250
N.N. 2		100	90	60		250
TOTAL	50	350	390	270	40	1100

CONSULTORA CIMAR

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Rodrigo Grau						0
Danny Rivera	50					50
José Zepeda	50					50
TOTAL	100	0	0	0	0	100

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
TOTAL	0	0	0	0	0	0

10.1.5. Objetivo específico 5.

Registrar y analizar las condiciones ambientales asociadas a los principales focos de abundancia del recurso.

UNIVERSIDAD CATÓLICA DEL NORTE

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña						0
Alex Cortés						0
Manuel Andrade						0
Juan Carlos Villarroel						0
Viviana López						0
Ana Olivares						0
Ximena Bennett						0
Julio Moraga		30	60	40	20	150
Manuel Berrios		30	60	40	20	150
Claudia Valenzuela						0
Sergio Fuentes	200	50				250
Daniel Cespedes						0
TOTAL	200	110	120	80	40	550

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia						0
Luis Cubillos						0
Monica Barros						0
Milton Pedraza						0
N.N. 1						0
N.N. 2						0
TOTAL	0	0	0	0	0	0

CONSULTORA CIMAR

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Rodrigo Grau						0
Danny Rivera						0
José Zepeda						0
TOTAL	0	0	0	0	0	0

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
TOTAL	0	0	0	0	0	0

10.1.6. Objetivo específico 6.

Analizar la situación actual del recurso en la zona de estudio, considerando los antecedentes de la pesquería y los resultados del proyecto

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Enzo Acuña			25	30		55
Alex Cortés						0
Manuel Andrade						0
Juan Carlos Villarroel						0
Viviana López						0
Ana Olivares						0
Ximena Bennett						0
Julio Moraga						0
Manuel Berrios						0
Claudia Valenzuela						0
Sergio Fuentes						0
Daniel Cespedes						0
TOTAL	0	0	25	30	0	55

UNIVERSIDAD DE CONCEPCIÓN

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Hugo Arancibia			10			10
Luis Cubillos		100	70	60	20	250
Monica Barros						0
Milton Pedraza						0
N.N. 1						0
N.N. 2						0
TOTAL	0	100	80	60	20	260

CONSULTORA CIMAR

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Rodrigo Grau						0
Danny Rivera						0
José Zepeda						0
TOTAL	0	0	0	0	0	0

NOMBRE	MUESTREO	PROCESAMIENTO	ANALISIS	INFORMES	TALLER	TOTAL
Luis Cid						0
Rubén Alarcón						0
TOTAL	0	0	0	0	0	0